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Resumo

Ao longo dos tempos, a segmentação de objectos 3D tem provado ser um desafio, dado que pode ser

utilizada em diferentes áreas e a maioria dos resultados da segmentação depende da interpretação humana

do objecto. Para cada contexto, diversas soluções foram propostas com diferentes objectivos, limitações

e vantagens.

Com este trabalho propomo-nos a superar algumas dessas limitações usando o algoritmo de seg-

mentação Collection-aware Segmentation (CaS ). Este algoritmo identifica os segmentos dos objectos que

se encontram numa coleções, baseando-se na sua individualidade e encontrava-se inicialmente integrado

numa framework de recuperação de objectos 3D. O principal objectivo da solução descrita neste docu-

mento foi isolar e melhorar esse algoritmo do resto da aplicação, tornando-o capaz de decompor objectos

3D que se encontram embutidos numa coleção de objectos.

Para atingir esse objectivo, a solução foi melhorada, alterando a arquitectura e algumas caracteŕısticas.

Com essas alterações surge uma abordagem diferente, o Adapted CaS que usa a individualidade dos

segmentos a fim de segmentar automaticamente uma colecção de objectos. Para isso, utiliza a abordagem

Hierarchical Fittinf Primitives (HFP), que gera uma árvore binária. A decomposição da colecção de

objectos segmentados é gerada ao descer nessa árvore, seleccionando os segmentos que são importantes

para a decomposição, os quais são descobertos com base na sua singularidade relativamente á colecção a

que pertence.

Após a execução do teste que foi realizado a fim de se compreender como os seres humanos segmentam

uma coleção de objectos, foi posśıvel perceber que alguns dos resultados produzidos por Adaped CaS estão

sobre-segmentados. Assim, surge uma abordagem diferente, a Geons-augmented CaS, onde a principal

diferença é a introdução de Geons para decompor um objecto.

A avaliação experimental revela que a nossa abordagem produz uma segmentação com resultados

significativos para o ser humano e que melhorou relativamente ao Original CAS. Igualmente mostrou

que, comparativamente com a abordagem original, gastou menos tempo de execução, mas em contra

partida necessitou de mais memória. Ainda assim, é um bom resultado, dado que a memória é hoje em

dia um recurso barato.





Abstract

Along the times, segmentation of 3D objects has proved to be a challenge because it has several applica-

tions in different areas and also because most of them depend on the human interpretation of the object.

For each context, several approaches were proposed with different goals, limitations and advantages.

With this work we propose to overcome some of those limitations using the Collection-aware segmen-

tation algorithm (CaS). This algorithm was initially integrated into a 3D object retrieval framework. It

identifies segments of objects in collections based on their individuality. The main goal of the approach

described in this document was to isolate and improve this algorithm from the rest of the application,

making it capable of decomposing objects in 3D collections.

To accomplish this goal, the approach was improved by changing the architecture and some charac-

teristics. Therefor, we developed a different approach, the Adapted CaS which uses the individuality of

the segments to segment automatically a collection of objects. For that, it uses the Hierarchical Fitting

Primitives (HFP) that generates a binary tree. The decomposition of the segmented objects collection is

generated by traversing this tree and selecting the important segments for the decomposition, these are

found based on theirs singularity relatively to the collection where it is set in.

After the execution of the test that was performed to understand how human beings segments a

collection of objects it was possible to notice some over-segmentation on the results produced by Adaped

CaS when decomposing the collection. So, a different approach arises, the Geons-augmented CaS where

the main difference is the introduction of Geons to decompose an object.

Experimental evaluation reveals that our approach produces meaningful segmentation for the human

being and has improved comparatively to the Original CaS. It has also showed that, comparatively to the

Original CaS, less execution time was spent but more memory was used. This is still a good trade-off,

since memory is nowadays a cheap resource.
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Chapter 1

Introduction

Mesh segmentation is used as a stage in many computer graphics applications such as, collision detection,

animation or even indexing and retrieval of 3D objects, making these approaches application depended.

As computer graphics is a growing area, several studies in this subject have been proposed with different

algorithms. On this document we present limitations of the currents approaches, and still a different new

approach. This is based on an algorithm previously presented by Alfredo Ferreira et al. in [10] which

is embedded on an application of indexing and retrieval. The major goal of the work described in this

dissertation was to isolate this algorithm from the rest of the framework and adapt it in order to create an

independent segmentation approach. In this section we give a brief description of the motivation behind

this work and also a description of the existing limitations related to the current approaches. We then

briefly explain the proposed approach along with our main contributions, and finally an overview of the

dissertation.

1.1 Motivation

Each human being is a unique individual, and thus interprets his environment in different ways to each

other. This generates a huge range of possible interpretations of the world, and its components. Studies

have been made in order to find a pattern and a measure that can embody the majority of the human

being interpretations of the world. While interpreting the objects around him, it is common for a human

to segment them into meaningful parts. Indeed, the object segmentation has been subject of study in

different areas, from mathematics to philosophy, among others. In particular in computer graphics it is

studied and used in different applications, from object indexing and retrieval to 3D animation or collision

detection, not to mention CAD re-engineering.

1.2 Problem Description

Most of the proposed approaches were created in order to support different applications in different

domains. Usually the segmentation algorithms are a stage of a bigger solution so they produce the best

results that each application really needs, making the segmentation application and domain dependent.

These and other limitations were highlighted during a study about the existent segmentation techniques

and are described in chapter 2 where they were also evaluated with their advantages.

A major limitation of most approaches to 3D object segmentation is that they require interaction

with users. They need inputs provided by the users to properly segment an object and this hinders an

automatic segmentation. Another common problem with several approaches is the over segmentation.
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After segmenting, the presented results have more segments than a human would consider, producing a

meaningless result to the user.

Another common limitation occurs when we consider segmenting a collection of objects. These ap-

proaches only segment object by object instead of taking into account a collection of objects where they

are included, and also, do not segment all objects simultaneously, so segmenting object by object can

take more time than if it were done simultaneously.

1.3 Proposed Approach

To overcome the limitations we propose a different approach that extends the Collection-aware Segmen-

tation (CaS ) approach. This algorithm was originally proposed by Alfredo Ferreira et al. in [10] and

was embedded in a framework for retrieval of 3D objects. On this thesis we intended to prove that this

approach can be adapted into an independent segmentation algorithm that produces meaningful results

to the humans. To that end, we will separate it from the framework, while improving and refining the

algorithm. This approach uses the Hierarchical Fitting Primitives (HFP) [4] approach to hierarchically

segment the collection of objects, and Spherical Harmonics (SHA) to compute the descriptors and cal-

culate the similarity between segments. Because it is based on the HFP, the produced results are part

based, that is, meaningful to the user.

Since the Adapted CaS approach is no longer application dependent, its architecture has changed in

order to improve the approach, namely the execution time. As the Original CaS, the Adapted CaS has

two main stages, the initialization, where all foundations for the segmentation are computed, and the

iteration, where the segmentation is actually executed using the data structures built on the previous

stage. The main difference between the two approaches resides on the data structures. The Adapted CaS

no longer uses two binary trees and a shape pool. Instead it uses only one tree, two lists and a signature

pool.

The initialization stage where a Hierarchical Segmented Mesh (HSM) is computed for each object of

the collection using the Hierarchical Fitting Primitives. The HSM is a hierarchical binary tree that is

built bottom to top, where the leafs are the triangles of the mesh which are considered the initial clusters

and the root is the entire object. This is built by merging pairs of clusters with the minimum clustering

cost. In this case, this cost is calculated by fitting primitives (cylinders, cones, spheres and planes) to

these clusters. This structure helps guide through the segmentation because it indicates which are going

to be the next segments to be processed.

After being computed, the HSM is saved on the HSM Set, a data structure inherited from Original

CaS. Then the SHA signature for the root node of each HSM is computed . The resulting feature vectors

are saved on the signature pool. These are later used to label a segment as decomposable or not.

To support the segmentation, we added two lists, The Non Decomposable List (NDL), which saves

both all the segments that are going to be decomposed and all the segments that are labeled as not

decomposable, and the Non Segmented List (NSL), where we save all the segments that are going to be

processed on the next iteration. Also on the initialization stage the root nodes of the HSMs are saved on

the NDL.

The iteration stage performs the segmentation of objects using the foundations built on the previous

stage. Its execution is done by adding and removing segments from the NDL and NSL depending if the

segments are decomposable or not. The iteration and the algorithm itself finishes when it reaches the

last element of the NDL and the NSL is empty, returning the NDL with all the objects segmented.

After executing a test to evaluate how the human being segments a collection of objects and comparing

these results with the ones produced by the Adapted CaS approach, we have concluded that most of the

times, the approach produced over-segmented results, therefore a new feature was added to the algorithm.
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Figure 1.1: Evolution of the CaS Approach

This new feature uses a collection of Geons to label an object as decomposable or not. These are simple

objects that have particular characteristics [8] and some are the same primitives used on the Hierarchical

Fitting Primitives, such as the cylinder, the sphere and the cone. These were used by comparing each

object to all Geons in the collection, so that if the segment is similar to any of the Geons, than it is

labeled as not decomposable and so, the decomposition of that segment stops.

1.4 Contributions

On this work, one of the main contribution was to isolate the CaS approach of the rest of the indexing and

retrieval application, thus creating an independent segmentation algorithm. By isolating the segmentation

stage from the rest of the solution, the Adapted CaS (figure 1.1) returns the entire collection of segmented

objects instead of returning just a shape pool with the segments found during the decomposition, as the

Original CaS did.

Additionally to the isolated segmentation algorithm, Geons were introduced as a stop condition for

decomposing the collection of objects (figure 1.1), solving the over segmentation problem that is present

in various other segmentation approaches.

The overall contribution of this work was an algorithm for automatic segmentation that takes into

consideration the geometric similarities of elements in the collection and that produces a meaningful

segmentation to the user. Therefor, this approaches segments a collection of objects automatically without

need for user input.

1.5 Dissertation Overview

This dissertation describes and validates the proposed approach. The document here presented starts by

analyzing and studding the related work on the state of the art of three-dimensional object segmentation.

This study, presented in chapter 2, helped to understand the existing problems.

To overcome the identified limitations in the existing segmentation algorithms, a new technique is

proposed. This technique is based on the CaS algorithm originally proposed by Alfredo Ferreira et al. on

[10]. Chapter 3 describes in detail the Adapted CaS algorithm, as well as the Geon-augmented CaS. The

initialization and the iteration stages that compose the approach and how they work are also described

in that chapter, as well as the main data structures used in the algorithm and the relations among them.

To evaluate our approach four different tests were conducted. Two tests with users in order to discover

a meaningful segmentation and to evaluate the algorithm and two other tests to measure the performance

of the algorithm. On section 4 these tests are described and the experimental evaluation is present, along

with an analysis and reflexion of the results of the different tests that were performed.

In the last section of this dissertation we present our conclusions and a reflection on the future work

to develop.
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Chapter 2

Related Work

With the evolution of computer graphics applications and fact that mesh segmentation was applica-

tion dependent, several studies on this subject were proposed. Each application also requires different

segmentation results depending on their purposes, so the segmentation techniques are classified in two

different categories, the Part based and the Surface based described on the next section. Next we describe

these different segmentation techniques and finally we make a study that compares these techniques by

highlighting limitations and advantages.

2.1 Categorization of segmentation approaches

As most of the proposed approaches to 3D object segmentation are domain specific, the results of each

segmentation techniques can differ. Nevertheless, some authors [1], [26] classify the segmentation tech-

niques in two categories depending on the kind of segmentation accomplished based on a different point

of view on the object being partitioned, illustrated in Figure 2.1. The part based segmentation algo-

rithms take into account user’s interpretation and produces a 3D volumetric view while the surface based

segmentation rely on geometric features of the object surface and produces 2D surface view.

Part Based This type of segmentation decomposes the object into meaningful or semantic compo-

nents, based on human perception, and so, it is necessary to understand the human perception of the

objects. Many studies concluded that a human decomposes the object into smaller parts. Applying this

concept on the segmentation, the part based algorithms decompose a 3D object into sub-meshes meaning-

ful to the human that can be useful in shape matching, retrieval, and shape reconstruction applications

[25].

Surface Based The surface based segmentation is sensitive to the shape surface, to the geometric

properties of the shape boundary, like the planarity or the convexity. Hence, Surface-based segmentation

algorithms use surface criteria to segment an object into fragments. This type of algorithms is usually

used in texture mapping.

There are also cases in which both types can be combined. For instance, meaningful components

are used by surface-type segmentation and also the opposite, in which meaningful components are found

using surface-based attributes.

This categorization is used to differentiate the results of the approaches for a better evaluation and

comparison. The next section describes these approaches and classifies them.
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Figure 2.1: Representation of the result of the two different types of segmentation. a) Part Based
Segmentation; b) Surface Based Segmentation. (Image taken from [26])

2.2 Current Approaches to 3D Object Segmentation

The 3D object segmentation is a problem that has been widely studied and different solutions that use

distinct approaches have been proposed. Some of the existent and more relevant are presented on this

section.

2.2.1 Region Growing

The process of Region Growing starts on a seed1 and then traverses the mesh agglomerating the adjacent

faces. There are many criteria to choose which faces should be agglomerated and there are also many

stop or continue criteria, which are called termination or growing criteria, depending on the functionality.

Every time the cycle stops a sub-mesh is found. Then, it restarts the process on another seed.

The solution proposed by Zuckerberger et al. on [32], uses a depth first or breadth first search to

transverse the graph that represents the mesh. It starts in the node of this graph that represents the

seed which is a face on the mesh and is chosen by the user.

When it is traversing the graph it collects faces while they are forming a convex area, meaning that

this is the growing criteria, and the termination criteria is when the convexity property is violated. From

this traversal a segment is created and then it restarts traversing on an unvisited node of the graph

forming a new segment.

On [31] proposed by Y. Zhang et al. the Region Growing is a stage of the solution. As shown in Figure

2.2 the solution is constituted by four stages. In the first stage the Gaussian curvature is computed for

each vertice on the surface. Then, on the boundary detection stage, each vertice with a highly negative

curvature is labeled as boundary, using a predefined threshold, and the remaining vertices are labeled as

seeds. The next step on boundary detection eliminates the isolated vertices. Then it passes to the next

stage, the Region Growing, where it uses the seeds that were found previously to create the patches, and

uses the Gaussian curvature and the boundary vertices as termination criteria. Finally, a last stage of

post-processing is executed. In this stage, the vertices that were not labeled are assigned to a patch and

patches that have fewer vertices than a predefined number of vertices are eliminated.

Both proposed solutions use the region growing to produce meaningful results in order to be used

in retrieval, metamorphosis and simplification applications. So, this approach is classified as part based

segmentation.

1A seed can be a point, a face or region of the mesh and can be chosen by the user or automatically
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2.2.2 Clustering

The main idea of this approach is to cluster the mesh faces based on some rules. The main difference

between Clustering and Region Growing is that Region Growing starts only in one point, agglomerating

the adjacent faces, while Clustering approach starts on several points and agglomerates the adjacent faces

to each point generating several segments at the same time. There are two main Clustering types:

Hierarchical Clustering

In Hierarchical Clustering each face of the mesh initially represents a cluster. Then it starts a cycle where

first, the costs of grouping the faces are computed, and with these costs it chooses the pair of faces that

cost less to agglomerate. The cycle proceeds until we have as final result, the initial object. This method

generates a hierarchical tree where the root is the entire object, the leafs are the triangles of the mesh

and the intermediates nodes are the several segments which resulted of each iteration of the cycle. There

are many ways to calculate these costs. One of them is by approximating a primitive to the new cluster

generated by grouping the clusters. Other is calculating the convexity of the cluster.

The final result of this initial technique is a binary tree whose leaf nodes are the original model vertices

and the rest represents two child nodes clustered, that is, whenever two vertices are merged, a new node

is created on the mesh that is the parent of the two merged nodes that represent the vertices of the mesh.

In the last solutions presented that use the face clustering, a dual graph whose propose is to support

the segmentation is usually used. Along with the graph a tree who’s leafs are the clusters that represent

the faces and this tree is built along the algorithm. Whenever two nodes of the dual graph are fused, a

parent node is created on the tree and the algorithm proceeds as was previously explained. For each pair

of nodes, graph edge, a cut value is assigned, and the edge with lower value that is going to be contracted

is chosen. The cut value is calculated based on a primitive, that is, given a cluster, it is approximated, in

this case, to a plane. In [4], Attene et al., also uses other kinds of primitives, like spheres and cylinders

to calculate the clustering cost.

In his latest works, Attene et al. in [6] gives emphasis to the convexity of the object. Therefore, a

hierarchy similar to the previously described is created, where the cost of clustering is calculated based

on the cluster convexity.

This approach is surface based because it is based in using the criteria of the surface as the convexity,

or using the primitives to compute the clustering cost. These proposed solutions are used in reverse

engineering, mesh denoising and deforming shape features applications.

Iterative Clustering / K-means

The main idea is to choose the best segmentation of k clusters. Hence, the total number of k clusters

that are going to be generated by the algorithm is provided by the user. Initially a representative group

of k clusters is created, then each face of the mesh is associated to a cluster until it reaches r radius. This

radius is the distance between the seed and the boundary of the patch.

Curvature 
Estimation

Boundary 
Detection

Region 
Growing

Postprocessing

3D 
Triangulated 

Model

Decomposed 
Parts

Figure 2.2: Representation of the four steps of the solution proposed by Y. Zhang on [31].
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After having the first segments, the algorithm restarts the execution changing the representative

group of clusters until there are no more changes on the segments found. The algorithm goes iteratively

detecting what the best segmentation is given a number of clusters. In [2] the Iterative clustering is a

stage, and this proposed solution contains four stages. The first calculates the feature value to each point

of the mesh, in this case, a value that characterizes the surface based on the curvature, which is called

shape index. This value states if the point belongs or not to a concave, hyperboloid or convex shape. In

the second stage, the algorithm builds, for each node, a histogram that has the values of the neighbors

inside a radius r, which is the distance between the seed and the boundary of the patch. These values are

then saved on a feature vector. The third stage just reduces the size of the feature vectors and transforms

the feature spaces in coefficient values. The last stage applies the k-means algorithm to the coefficient

vectors. This approach is surface base because it uses the shape of the surface to segment, in this case,

the concavity, the hyperboloid and convexity to calculate the feature value of each point and their goal

was to create a segmentation that is useful for object recognition tasks.

In [16] the Iterative Clustering is used on the last stage of the algorithm. Initially a decomposition

using the Iterative Clustering is done. To each pair of faces a distance is attributed, and this value is

used to calculate the probability of a given face belonging to a segment of the mesh. Next, the Iterative

Clustering k-means agglomerates the faces that have more probability of belonging to a given segment,

which results in having a zone where the probability of a face belonging to a given segment is very near

the probability of the same belonging to another segment, getting a fuzzy area, as depicted in Figure 2.3.

Lastly the fuzzy decomposition is transformed into a final decomposition by refining the limits using an

appropriate algorithm. For this proposed solution it was important to produce a meaningful segmentation

that could be used in matching, retrieval, metamorphosis and computer animation applications. So, this

is classified as part based.

Figure 2.3: Fuzzy zone represented in red. (Image taken from [16] c©ACM 2003)
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2.2.3 Skeleton Based segmentation

This approach uses the skeleton of the object to determine the segmentation. The method most used

to extract the skeleton is the Reeb Graph 2. For instance, in [30] an enhanced topological skeleton is

extracted, for which are initially are found the feature points, located on the extreme of the object, and

found using the geodesic distances. These are used to create a function that indicates the distance from a

given point of the mesh to each feature point of the mesh. Then the constraints are identified and the Reeb

Graph is built, which uses these constraints to subdivide its components. After having the skeleton, the

object is segmented in the areas where each skeleton node corresponds to a segment of the object. This

approach is classified as part based because the authors attempt to create a meaningful decomposition

from a human point of view so it can be used in shape modeling, deformation and retrieval applications.

A recent approach, referred in section 3.1, uses the Shape Diameter Function (SDF ) values, which

represents the shape diameter, and uses it to extract the skeleton [28]. The algorithm starts by choosing

N points distributed over the object, then calculates the SDF values and divides them in half. Next it

projects the point to a point inside the object, that is, in the opposite way of the object normal on that

point, for which the distance between the new and the old points is the previous calculus. The skeleton

is then built by uniting the different points found on the previous step. As this approach uses the shape

diameter it is classified as surface based segmentation.

2.2.4 Geometry and Structure-Based Segmentation

The segmentation approaches that are based on the geometry and structure of the object use this kind

of descriptors, which can capture the main features of a given surface and must be based on the shape

of the object. The Taylor approach proposed by Mortara et al. [21], starts with a point on the model

chosen by the user, around which is drawn a sphere, having the point as center and radius r, which will

progressively increase, generating cuts on the object in the intersection areas between the sphere and the

object. The radius stops increasing when there is a drastic change on the cut, for instance, in the size

of the cut or if it passes from one cut to two cuts, which represents a bifurcation of the object. With

the evolution of the radius of the sphere, it is possible to have information about the shape of the object

structure. If the sphere just creates one cut, that is, if there is just one intersection between the sphere

and the object, we can conclude that the surface around that point can be considered a disc and that the

segment produced by the cut can be considered a sharp or round zone or in the presence of a blended

vertices. If there are two cuts, it means that we are in a presence of a cylinder or a conic zone. This

changes according to the threshold between the two cuts rays. If the sphere intersects the object more

than twice, it means that we have a ramification of the object.

As an extension to the Taylor approaches there is the Plumber approach whose goal is to find the

tubular features of the object. The previous algorithm is initially executed to identify the seeds vertices

of the possible cylindrical or conical sections. By agglomerating the candidate seeds, the seed zones. The

first seed zone chosen is called medial loop, whose goal is to find the tubular zones are created. In this

method the sphere center is the center of the loop and it grows until it sweeps the entire tubular zone

and then it passes to the next possible tubular or bifurcate zone. The loop stops when the size of the

2Reeb graph was initially proposed by the mathematician George Reeb in 1946 in [24]. This approach was
quickly adopted by the computer graphics because it has showed that it is a good structure to solve problems
of shape correspondence and morphing. This kind of structure [7] are used in segmentation and many other
applications. It can be considered a shape descriptor because it saves the topological information of the object.
Each node of the Reeb Graph represents an extreme or a critical point of the object and the edges the connections
among them. The critical nodes are points where there is some change on the shape of the object, for example,
the increase or decrease of the width in some place on the shape or where it has a concavity, etc. There is an
extension to this approach which instead of using critical points, uses critical and regular areas. The critical areas
are the extreme zones, minimum, maximum and for example areas with concavities. In this extension the graph
nodes are the centers of these areas and are extracted based on the shape contours. The edges are obtained by
expanding the critical areas [3].
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intersection is bigger or smaller than a given threshold, when it reaches the end of a tubular or a bifurcate

zone. In the end of the algorithm, the zones that were not detected as being tubular are classified as

body parts of the object.

Mortara et al. in [22] uses the Plumber approach to find the tubular zones in objects that represent

the human body. They present a solution that finds the human body members, based on the relationship

between them, for instance, the size comparatively to the group of tubular features, the distances between

the others zones. For example we can think of a hand, the five fingers are going to form small tubes with

sizes not very different that are connected to the hand palm, and with this information the algorithm

can realize that these small tubes are the fingers. This information of the spatial relation between the

tubular zones is obtained based on a connection graph, whose nodes represents those zones and whose

edges represent the relations of adjacency between them. Both solutions presented are surface based

because they use the surface criteria to segment in this case the intersection of the sphere with the

object.

2.2.5 Watershed Based Segmentation

In the beginning this approach was used for segmenting 2D images. It was proposed by Ioannis Pratikakis

in [23] and later extended to the 3D object segmentation by Mangan et al. in [20]. The basic idea of this

technique is to fill up the object with water as it were a recipient. The water goes filling the watersheds

of the object and separation lines are created in the junction points. In the end, when the watersheds

are flooded, the process stops. As result the object is segmented and the watersheds represent the

object segments. Zuckerberger et al. in [32] describes two algorithms that use this analogy of flooding

the object sections, flooding convex decomposition and watershed decomposition. The flooding convex

decomposition segments the objects based on his convexity. This algorithm uses the analogy of the

watershed that is being filled until it overflows, and then it restarts on another watershed, each one of

them representing, in the end, a segment. For that, it uses a dual graph. Initially it starts in a graph

node and goes traversing the graph, agglomerating the faces while these form a convex segment of the

object. If two faces cease to form a convex segment after agglomerating, the cycle stops and restarts on

another point of the mesh. The watershed decomposition analogy is like following a drop “downhill”.

The algorithm starts by looking and labeling the minimal areas and then does the same for the plateaus

areas. After the labeling, a loop is executed, which descends the plateaus until it finds a labeled area.

This approach uses surface criterion, such as convexity, making it a surface based approach.

2.2.6 Explicit Boundary Extraction

This technique extracts the contours of the segmentation boundaries, that is, the lines that separate each

segment. There are many ways of extracting these contours and they are based on several features of the

object, like for instance the concavity. After this extraction, the algorithms that use this technique are

able to determine the segments boundaries. According to Lee et al. the human being usually segments

an object based on its concavity [18]. Figure 2.4 shows that the algorithm has four main steps. The

first step assigns to each vertices of the mesh its respective feature vector that in this case represents

the concavity value on that point. After those values have been assigned, the contour curves in those

point are extracted from the object. In the second stage a contour is chosen based on its length and on

its centrality in the mesh. To create the segment it is necessary to close the contour curve, for this, the

algorithm finds the shortest path between each extreme point of the curve, as can be seen in figure 2.4 on

the phase Feature Contour Completion. To finalize the resulted segments are tests to for meaningfulness.

So, this technique is classified as part based.
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Figure 2.4: Steps of Explicit Boundary Extraction algorithm. (Image taken from [18] )

2.2.7 Random Walks

In [17] Lai et al. proposes two similar algorithms, an iterative and an automatic that uses this approach

on 3D object segmentation. In general the algorithm distributes seeds over the mesh, and then to each

adjacent edge of each face is attributed a set of probabilities. These correspond to the probability of a

random walk passing an edge of a non-seed face to reach one of the seeds. Each segment is represented

by the face. To build them each face is assigned to the segment whose probability of reaching the seed

that belongs to the respective segment is bigger.

The difference between both methods is on the seed selection. In the iterative method the seeds

are selected by the user and then distributed through the mesh where each seed corresponds to a final

segment. In the case of the automatic method, the seeds are automatically distributed on the mesh

distribution is based on the salience of the object and on the regions that contain important features to

the segmentation. Initially to find these areas it does the remeshing and then determines the seeds. This

classifies the approach as surface based.

2.2.8 Symmetry Based Segmentation

Many objects are symmetric. Simari proposed an algorithm that segments the object based on its

symmetries [29]. Initially the algorithm searches the maximum of symmetric parts of the object. For

that, it uses the robust M-estimation using an iteratively reweighted least squares (IRLS) algorithm [13]

then the symmetric sides are devised using the planar symmetry. The object has symmetry relatively

to a plane, that is, by intersecting a plane with the object, both sides that are separated by the plane

are symmetric. After the intersection one of the sides is discarded and the other is divided again using

another plane and repeats successively until there is no more symmetry in the object. By this process a

hierarchical tree is generated, which is called folding tree and represents the decomposition of the object.

The root is the entire object, the children are the parts segmented by the planes, that is, each edge has

the respective symmetric side and so on until it reaches the leafs. One of the stop criteria is when the

number of faces on the mesh is lower than a given threshold. Another stop criteria is when the area of

the mesh is lower than a given percentage of the object, and still another one is when the number of

recursive folds exceeds a maximum. Because this approach uses the symmetry to segment an object, it

is classified as surface based.
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2.2.9 Convexity Based Segmentation

For some authors the main feature of an object is its convexity, that is, if we segment an object in the

convex zones it creates sections with meaning to the human being. An example already referred in 2.2.1

uses the convexity as a growing criteria, as it agglomerates faces until the convexity property is violated.

In a similar way the Hierarchical Cluster approach described in 3.3.2 uses the convexity to calculate the

clustering costs [6]. This approach is labeled as surface base since it uses the convexity to segment.

Another way to use the convexity to segment an object is by calculating and assigning its convexity

value for each point of the mesh. Then a cyclic graph is built, whose nodes represent points of the

mesh with similar convexity values and the edges represent the connections between them. After having

the graph, the object is segmented by crossing a plane in that points [19]. In this case the approach is

classified as part based since it uses the convexity of the object to produce meaningful segments.

2.2.10 Feature Points and Core Extraction

Katz et al. proposed an algorithm that uses Feature Points and Core Extraction [15] to produce a

meaningful segmentation. The segmentation can be pose variant, that is, the same object with different

poses can generate different segmentation results. For instance if an object that represents a human body

is sitting and the same human representation is standing up, the results of the segmentation can differ. To

overcome this problem and the problem of noise sensitive, the algorithm initially applies a mesh coarsing

and then it finds a pose invariant representation of the object (Figure 2.5. a). To accomplish that, it uses

a Multi-dimensional Scaling (MDS) [9]. After having this abstraction, the feature points of the mesh are

extracted (Figure 2.5. b) using the geodesic distances and the convex hull. To get the core (Figure2.5.c)

a spherical mirror is used around of the pose invariant representation and similarly are detected the

remaining segments of the object where each segment corresponds to one of the feature points previously

calculated. To finalize, and as in the first step a mesh coarsing was applied, it is necessary to revert this

process, that is, to refine the mesh and to present the segmented object in the original position (Figure

2.5. d).

Figure 2.5: Steps of Feature Points and Core Extraction algorithm. a) MSD shape; b) Feature points; c)
Core; d) Final Result. (Image taken from [15] c©Springer-Verlag 2005)
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Figure 2.6: Example of a graph used to measure the similarity between two segments. (Image taken from
[27] c©Springer Sience+Business Media, LLC 2009)

2.2.11 Segmentation using Shape-Diameter Function (SDF)

The Shape Diameter Function (SDF’s)3 values are calculated and used by Shapira et al. in [28] to

detect to which segment a given point belongs. The points that have similar SDF’s are grouped using

an iterative clustering, which generates the object segments. The second step of the algorithm uses

the K-Way technique to smooth the segments boundaries. In [25] and [27] the SDF is used to identify

similarities between objects. The algorithm previously described is initially used to segment the object.

After having the segmentation, in the next set it is going to calculate again the SDF value for each

segment and then successively until it reaches a maximum of segmentation. In result of the recursion

a hierarchical tree is generated where the root node represent the entire object and the levels below

represents the recursive segmentations. The algorithm concept is that besides calculating the distances

to find the similar segments, the proposed algorithm also takes into account the segment context, for

instance, if it is a hand in a human body representation. To get the object context, the algorithm uses

a graph that has the distances between the segment and the root node, that is, the entire object. If we

want to compare two segments of two different objects using this algorithm, we use a graph (Figure 2.6)

that contains the two different objects on the top of the graph and the nodes are the segments of both

objects, that were founded during the algorithm until it reaches the final segments that are going to be

compared. This graph is a flow graph, so, two extra nodes are added, a source node that is connected to

the nodes of the first object and the node in the opposite side that is the sink and is connected to the

nodes of the second object. The nodes of each object are connected between each other, as can be seen

in Figure 2.6, where the p and p’ nodes are connected between each other. Then the nodes in the upper

hierarchy (r, q, r’, q’) are connected between each ones. Then the maximum flow through the graph is

calculated , this value representing the distance between two segments and the similarity between these

segments, based on its context. This approach is classified as part based because it is used in a shape

retrieval application which need meaningful segments.

3The Shape Diameter Function is an example of descriptors presented by Shamir et al. at [28]. For each point
on the mesh it calculates the diameter of the object on the neighbor of the point. To calculate this value, a cone
is drawn, the vertice is the point and the base is on the opposite direction of the normal of the point, it has an
angle and the height is the diameter of the object on that point. That is, several radius are drawn inside the
cone, they reach the other side of the object. The average of the values of these radius is calculated and saved on
a shape descriptor
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2.2.12 Summary of Segmentation Approaches

For several years segmentation approaches were proposed, each with particular characteristics and pur-

poses. The approaches referred in this section are the most commonly used and relevant for this master

thesis.

The first approach described is the Region Growing, which starts by visiting a seed (this is a face

of the mesh), then agglomerates the adjacent faces by traversing the mesh and it stops when it reaches

a stop condition, like the convexity, and restarts the process on a new non visited seed. In a similar

way the next approach also agglomerates faces,like in the Clustering approach but instead of creating

patch by patch, it creates all patches simultaneously. This is constituted by two different types. First

the Hierarchical Clustering where a hierarchical tree is formed, in which the leafs are the mesh triangles

and the root is the entire object. This tree is built bottom to top and it clusters adjacent faces with

the minimum merging cost that can be calculated on different ways, like fitting the resultant cluster to

a primitive. Then in the Iterative Clustering, given a number of clusters, several results of segmentation

are generated, then it chooses which is the best segmentation. It starts by creating a representative group

of clusters and then each adjacent face is clustered until it reaches a radius r.

Some solutions use the Skeleton based segmentation where the first stage is to generate the object

skeleton using different techniques in which one of them is the Reeb Graph. Then, it uses the information of

the skeleton, like where there is an abrupt change on the object shape, to create the segmentation. Another

approach that uses the object shape to segment is the Geometry and structure-based segmentation; they

are the Taylor and Plumber. These have the goal of detecting tubular features by blowing bubbles that

starts on a seed that is predefined and stops blowing when it finds an abrupt change on the object shape

like a for example a bifurcation.

The Watershed based approach simulates the analogy of leaking water to a basin and the stop condition

is when the basin is full of water and a separation line is created in the junctions point. In the end, the

filled basins represent the segmentation results. As the name itself indicates, the Explicit Boundary

Extraction extracts initially the contours of the segmentation boundaries, which can be extracted in

different ways based on the object features like the concavity.

Many of these approaches merge adjacent faces. Another example is the Random Walks approach

which also uses initially seeds that are distributed by the mesh and then for each adjacent face it calculates

the probability of a random walk passing by it when reaching a seed.

One feature that is also important to human beings is the symmetry, so an approach was proposed

by Simary in [29], that uses this feature to decompose the objects. To accomplish that, it uses planar

symmetry, then it ignores one of the sides and repeats the process on the other side to create a hierarchical

tree. Another feature that has showed to be increasingly important is the convexity, so the solutions that

are Convexity based segment the object based on this feature and generates convex segments.

In an attempt to overcome the pose variant limitation a new approach arises called Feature Points and

Core Extraction. This initially creates a pose invariant representation of the object, and then extracts

the feature points and the core. After finding the core it is necessary to extract the rest of the segments

which is done by matching each part to the feature points. In the end, it reverses the initial process so

the object can come back to the same shape.

A recent approach is the use of SDF for segmenting objects. In summary this values give the diameter

of an object in a neighbor of a point and then is used to merge the points that have the same or close

diameter values using a histogram.

All of these referred approaches segment 3D objects individually, instead of segmenting various objects

simultaneously. The latter is a recent concept and it is used in the solution proposed on this document.

Next we present a study containing various existing approaches on this concept.
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2.3 Segmentation of 3D objects from collections

The approaches previously described segment only one object, and do not take into account other similar

objects. This is a recent concept that has few studies and not much work done on the topic. However,

one of the most prestigious investigation groups in the 3D shapes analysis area, the group of Thomas

Funkhouser of Princeton has presented an algorithm [12] that uses the information of similar objects. The

first step of the algorithm is to build a graph whose nodes represent the mesh faces, the edges represent

the edges of the mesh that connects adjacent faces (Figure 2.7 – Green Lines) of the same object and

they also represent the correspondence between the faces of different meshes (Figure 2.7 – Reed Lines).

This correspondence between the different objects makes the correspondent parts of the mesh aggregate

in the same segment. In the next step the algorithm is going to execute a hierarchical clustering of the

graph, where the adjacent faces of the same model and the correspondent faces of different models are

going to probably belong to the same segment. The result of this approach is a meaningful segmentation

as can be seen in Figure 2.7 where the back of the chairs are separated from the legs and from the sitting

area and even each leg is separated.

Another and different approach uses a different concept, which was proposed by Kalogerakis et al.

in [14]. This new approach was developed in order to segment and label 3D mesh parts simultaneously,

producing a meaningful segmentation. The solution uses a collection of labeled training meshes that

are previously decomposed and labeled by users. Then, with this group labeled and with all features

identified, it segments based on this data one object at a time. The main limitation that they refer that

is been overcomed is that do not need manual parameters but instead it needs a trained collection of

meshes. For this solution the goal was to segment and label an object while for the solution presented

on this document the main goal is to segment a collection of objects automatically based on geometric

similarity of the elements of the same collection.

Figure 2.7: Representation of the graph in a set of 3D objects. Green Lines – represent the edges that
connect the adjacent faces of the same object. Red Lines – represent the correspondence between the
faces of different meshes. (Image taken from [12])
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2.4 Comparative Analysis

The segmentation approaches have similar goals but different purposes, since they are application de-

pendent, that is, they depend on the application that will use the segmentation, since collision detection

and animation to 3D object indexing and retrieval and on the object type like for instance CAD. So, to

evaluate and compare segmentation approaches is not an easy task to do. There already published several

comparative studies that use different comparison metrics. Some of these studies are very detailed, the

most relevant are [1], [26], [5] and [3], they demonstrate that compare techniques is a challenge. Because

the segmentation usually is a stage of different applications, there is not a heightened concern as long

as the final result is the expected result, which generates several limitations on the segmentation ap-

proaches. To define which ones are the most significant, it was made a survey of the disadvantages and

the advantages of the studied approaches. This analysis will provide the necessary information to create

a new solution that can overcome the limitations getting a better result. The tables 2.1 is a resume of

the survey.

2.4.1 Limitations of 3D object Segmentation Approaches

During the process of analyzing the approaches some limitations were found in order to develop a new

improved solution that will overcome these limitations.

On this section are described the most relevant limitations of each approach that are important to

this project. One of the most common limitations is the inputs provided by the users need in order to

decompose the objects, the approaches need information provided by the user. Also another common

limitation is the over-segmentation, this means that the result of the segmentation has more segments

that it should have.

Some approaches results do not detect all the segments that compose the object, this limitation is

called, the ability of detecting all segments also it happens that after the decomposition, other approaches

do not generate smooth boundaries, that is, the boundaries are serrated. Another limitation given the

object shape is the pose invariance, like for instance human body representations, where it can be sitting

or standing up, after the results of segmentation are different.

Because one of the goals of this proposed solution is to segment a collection of objects, a study

on this particular subject was made, where segmenting object by object, that is, having an individual

segmentation is a limitation because on the case of existing a collection of objects, the segmentation of

these objects takes a long time.

Inputs provided by the users

Most of the 3D object segmentation approaches needs some specific information provided by the users. For

instance, in the approaches Region Growing and Random Walks the user needs to choose the object seeds

that are going to form the most relevant segments. In a similar way, in the Taylor and Plumber the user

needs to indicate which the points represents the center of the sphere, which in the end will correspond to

the final representation of the object segments. In the case of the Iterative Clustering and segmentation

on 3D object sets [12] it is provided the final number of segments resulting of the segmentation. In the

previously mentioned approaches the interaction with the user is done in the beginning of the algorithm.

In the Hierarchical Clustering it is done in the end, that is, after having built the hierarchy of segments,

the level of the hierarchy that is meaningfully to the user is chosen by him. The same happens with the

Watershed-Based approach were it can be necessary, at the end, for the users to complete the boundaries

or choose the segments that can be ambiguous.
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Over-Segmentation

This limitation is common on the several approaches that use Surface-Based segmentation. One example

of over-segmentation is the Region Grow approach described in [32] where one of the agglomeration

criteria used is the convexity of the object, if the object has many small and convex areas, all of them

will be identified has different segments this also happens on the Watershed-Based approach where is also

used the convexity to decompose an object.

In a similar way, the Hierarchical Clustering and Random Walks approaches can produce over seg-

mented results.

Ability of detecting all segments

Many times, the objects have less evident details or features, so the object becomes as realistic as possible.

In these cases some of these details or features are not detected in the segmentation. This slip happens on

Taylor and Plumber approaches while, for instance, it is segmenting an object that represents a human

body with a very short neck or short fingers, the algorithm may not detect these tubular zones. Another

example is a object that represents a fat human body, in this case, the legs join sooner that it should,

so, after segmenting, the legs would be shorter in relation to the arms length [22]. Other features that

may not be found are the fingers of a closed fist. In a similar way, the solutions Skeleton based does

not detect the fingers on a closed fist and does not detect also structures with reduced size[30]. This

failure on detecting segments happens in a similar way on the solution present by Katz et al. [15], whos

approach denominated, Feature Points and Core Extraction. In this case the problem is the impossibility

of detecting some boundaries, that is, only detects one segment when it should detect two. The example

shown is a lion whose extremity of the tail forms a closed loop with the back, so when is going to segment,

the algorithm considers that the tail and the back forms only one segment. The solutions that use the

SDF’s values have the same limitation as to the parts detections, because it bases on the width of the

objects. In the case the object not having cylindrical zones, or with very reduced width, they will not be

detected by the algorithm.

Generating smooth boundaries

Another common limitation is the existence of boundaries that are not smooth when finishes segmenting.

This happens because usually the objects are represented by a polygonal mesh. This problem appears

in solutions that use the Watershed based and Feature Points and Core Extraction approaches. To

overcome this limitation, many of these solutions have a post processing stage that smooths the segments

boundaries.

Individual Segmentation

In the case of having a collection of objects and the need of segment all of the objects in that collection,

by doing it object by object is slower than segmenting all the objects simultaneously. Since the goal the

work proposed on this document is to segment a collection of objects simultaneously, it is necessary to

understand what solutions have some concern in this field. This is a recent concern, only in the last two

years were presented solutions that overcame this limitation, as in [12]. Besides that, this solution still

has a big limitation because it depends on the alignment and similarity of the objects of the collection

to segment the object.
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Pose Invariant

In computer graphics it is important to create realistic scenarios and scenes, so for that, are created

several objects that may move on the scenario causing several different poses of the object. So, this

may cause different segmentation for the same object but in different poses. The solutions that uses the

Region Growing or the Hierarchical Clustering or the Iterative Clustering or the Skeleton Based [30] or

the Explicit Boundary Extraction or the segmentation on 3D objects sets in [12] this is one of the main

limitation.

2.4.2 Advantages

As the limitations, some advantages were highlighted during the study of the approaches. Some of these

advantages are an attempt to overcome the referred limitations.

To overcome the previous limitations most of the approaches use preprocessing or post-processing

stage, with the first they try to overcome the pose invariance it finds on the beginning a pose invariance

representation of the object. With the post processing, they try to overcome the over segmentation or

also by defining some limitations like the number of patches on the beginning of the execution of the

approach.

Few of these advantages do not correspond to a limitation. One, is the extra information about the

objects, that is, some solutions can give extra information about a segment of the object or of the object,

like for instance the thickness. Also, another type of information that can be provided by the approach is

the topological information that gives the perception of distances between the object parts. The hierarchy

is another advantage but it does not give information about the object, it gives to the user the possibility

of choosing which segmentation is more meaningful to him.

The main goal of some of the identified common advantages is to overcome some of the referred limi-

tations. Some of the most important advantages are, pose invariance, Extra and topological information

of the object , hierarchy and over-segmentation.

Pose Invariant

As it was referred in section 2.4.1 some segmentation approaches presented depends on the object pose.

But some of them try to overcome this problem, in order to do that, most solutions use a preprocessing

stage where they try to find a pose invariant representation of the object. Solutions that use the Feature

Point and Core Extraction use this kind of techniques to overcome this limitation. The Geometry and

structure-based segmentation or the SDF approaches are based on the cylindrical shapes or in the width

of the segments so, on the solutions that use these approaches this limitation does not occur.

Extra information about the object

As the Geometry and structure-based segmentation and the SDF approaches are based on the cylindrical

shapes or in the width of the segments, this information can be provided. It also can then be used by

the application where the segmentation is built-in. In these approaches the main information obtained is

the object width. Another kind of information that can be extracted of the object from the segmentation

is the semantic of each segment in the case of the object to be a representation of the human body. In

the solution presented by Mortara et al. in [22] it is used the Plumber approach that detects the body

parts. Initially it is found the tubular zones of the object, then it is compared the distances between each

segments founded and at last it is assigned to each a semantic, so it is possible to get the width of the

tubular segments.
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Topological Information

In the case of Skeleton Based Segmentation the biggest advantage is the fact that besides of using the

geometric information of the object, it also uses the topological information, this generates a better

segmentation because it uses the spatial relation of the object. For instance, on solution proposed by

Julien Tierny at [30] where it first builds the enhanced topological skeleton using this, it first delimits

the core of the object then identifies the junction areas and finally this topological information not only

is used to segment the object but also to label it.

Hierarchy

Some solutions studied, generate a hierarchy of segments that has several segmentation levels, these

provides to the user an option to choose the most meaningful result.

In the Hierarchical Clustering in section 2.2.2 all solutions that use this approach generate a hierar-

chical tree that has several segmentation levels and produces different segmentation results depending on

the level. The trees are also used to transverse and during the process create segments, meaning that not

only the levels produce the segmentation.

Over Segmentation

This is one of the most common limitations of the approaches. The Watershed-Based and Random

Walks approaches tries to overcame this limitation by using a post processing stage that agglomerates

the smaller segments based on rules or by initially predefining a maximum number of segments. The

Hierarchical Clustering overcomes this limitation by initially setting a maximum threshold of deepness

introduced by the user or even during the execution the user can chose the deepness more meaningful to

him.
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Approaches Articles Limitations Advantages Part

Based

Surface

Based

Region Growing
[32]

User Interaction

Over-Segmentation
X

[31] User Interaction Segments and label simultaneously X

[11]
User Interaction

Over-Segmentation

Generates a hierarchical segmentation

Generates smooth boundaries
X

Hierachical [4]
User Interaction

Over-Segmentation

Generates a hierarchical segmentation

Generates smooth boundaries
X

Clustering [6]
User Interaction

Over-Segmentation

Generates a hierarchical segmentation

Generates smooth boundaries
X

[10]
User Interaction

Over-Segmentation

Generates a hierarchical segmentation

Generates smooth boundaries
X

Iterative
[2] User Interaction X

[16] User Interaction Generates a hierarchical segmentation X

Skeleton Based
[28] Failed detection of some segments

Analogue skeletons on the analogue parts

of different objects

Huge applicability in animation and dis-

tortion

Pose Invariant

X

[30] Failed detection of some segments

Uses topological information

Huge applicability in animation and

distortion

X

Geometry and

Structure-Based

[21]
User Interaction Failed detection

of some segments

Give extra information about the object

(width)

Pose Invariant

X

[22] Failed detection of some segments

Give extra information about the object

(width)

Detects human body parts

Pose Invariant

X

Whatershed Based
[20]

User Interaction

Over-Segmentation

Generates boundaries that are

not smooth or not closed

Pose Invariant X

[32]
User Interaction

Over-Segmentation
X

Explicit Boundary

Extraction
[18] User Interaction

Generates Smooth and closed

boundaries
X

Random Walks [17] User Interaction X

Symmetry Based [29] Over-Segmentation Generates Smooth boundaries X

Convexity Based

[6]
User Interaction Generates a hierarchical segmentation

Generates smooth boundaries
X

[19] Over-Segmentation X

[32]
User Interaction par

Over-Segmentation
X

Feature Points and

Core Extraction

[15]

User Interaction

Failed detection of some segments

Generates boundaries that are not

well defined

Avoids over-segmentation

Pose Invariant
X

SDF

[25] Failed detection of some segments

Give extra information about the object

(width)

Pose Invariant

X

[27] Failed detection of some segments

Give extra information about the object

(width)

Pose Invariant

X

[28] Failed detection of some segments

Give extra information about the object

(width)

Pose Invariant

X

Segmentation of 3D

objects from collections

[12]
User Interaction

Depends on the object alignment

Segments simultaneously an entire

collection of objects
X

[14]
The needing of using a trained set

of objects
Does not need inputs from the users X

Table 2.1: Table with the resume of the related work

20



2.5 Discussion

Several segmentation approaches have emerged as decomposition of 3D objects as is used in many differ-

ent applications in distinct domains that need different segmentation results. This also makes the task of

evaluating the approaches hard to perform, since there is an extensive range of approaches. Some surveys

on this subject were already performed by researchers. On these surveys, the authors classify the seg-

mentation approaches as part based or surface based, depending on the segmentation accomplished. Also

on this chapter we have described some of the most common limitations and advantages and emphasized

the most relevant to this work.

As all approaches are different there are no better approaches than others, each has limitations

and advantages, even though, with these studies and the evolution of these approaches, some tries to

overcome some limitations that are present in previous solutions. For instance, the Feature Points and

Core Extraction try to overcome the problem of pose invariance using a pose invariance representation

of the object. This limitation is present on Region Growing and Clustering among others. Many of

the approaches that are Surface Based can generate an over segmentation because it uses the surface to

segment the object. In the Region Growing approach is used the convexity to segment, and if there are

many small convex patches, this will be identified, to overcome this problem it uses a post-processing stage

that removes the extra segments by merging them to others or by initially predefining a maximum number

of segments. The Hierarchical Clustering approaches can avoid producing over segmentation when users

choose the results. A very common limitation, almost in all approaches is the needing of user interaction.

Some need to predefine the seeds like in Region Growing and Iterative Clustering approaches. Others to

select the level of the hierarchy generated by the segmentation approach, these are all the approaches that

produces a hierarchical segmentation. The approach that overcomes this limitation is the one proposed

by Kalogerakis et al. in [14] by using a collection of labeled training meshes. As refereed, it was emphasize

the most relevant to this work. The individual segmentation of objects can be consider a limitation if we

consider segmenting a collection of objects. If the segmentation decomposes object by object as it is in

the major approaches, then it can take more time to decompose the entire collection than if segmentation

was simultaneously.

In order to overcome some limitations highlighted in this chapter, as the need for user inputs, the

over-segmentation and the individual segmentation, a different solution is proposed on the next chapter.

This is an evolution of the original solution. The main differences between them are highlighted and the

new architecture and decisions are also described in the next chapter.
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Chapter 3

Collection-aware Segmentation

We present in this document the adaption to object segmentation of an algorithm which initial purpose

was to extract object parts for indexing. The Original Collection Aware Segmentation (CaS ) algorithm,

proposed by Alfredo Ferreira et al. in [10], was embedded on an indexing and retrieval solution. The

adapted algorithm isolates segmentation stage from the rest of indexing and retrieval solution and im-

proves it.

3.1 Approach Overview

In this section we present an overview of the Adapted CaS approach. However to understand this adapted

technique it is necessary to first have a look at the Original CaS approach. One of the main goals was to

improve the algorithm aiming only at purpose of the segmentation, that is, returning only the segments

that are important to the segmentation, instead of the purpose of the Original CaS that was to return

all the segments resulting from the segmentation. Because of these and other goals, the architecture of

both approaches are different, so this section will also highlight these differences.

3.1.1 Original CaS for Retrieval

The original version has two stages as illustrated in Figure 3.1. The first is the initialization where the

foundations of the segmentation are computed and loaded. The second stage is the iteration were the

objects of the collection will be automatically segmented.

It starts by generating for each object of the Model Collection the respective Hierarchical Segmented

Mesh (HSM) using the Hierarchical Fitting Primitives ( HFP, [4]) approach that consists on merging

clusters and then fitting them to primitives to create the final clusters (detailed at section 2.2.2). Next it

saves the HSM on the HSM Set and computes the object signature, Spherical Harmonics (SHA). This is

a type of descriptor that represents an entire 3D object with a number. Finally it adds the object with

the signature into the shape pool.

In the next step, the iteration stage, decomposability of each object on the shape pool is verified. In

fact, the iteration stage is the iteration of the shape pool. This data structure will store the segment-

signature pairs found during the decomposition and that are going to be used, in particular the signatures,

to label a segment as decomposable or not. To be decomposable, a segment has to be considered unique,

it cannot have a predefined number of x elements similar to it. This similarity is computed using the

differences between the segments signatures in the Shape Pool and the segment to be decomposed. If the

object is decomposable, it is decomposed by going to the respective HSM on the HSM set and getting

the child nodes of the decomposable segment, then it computes the signatures of these new segments and

23



Figure 3.1: Overall architecture of the Original CaS, with the two stages (Initialization and Iteration).

adds the pair on the Shape Pool. If the object is not decomposable, it passes to the next element on the

shape pool. This execution generates a second hierarchical tree that is built top to bottom and whose

elements are the segment-signature pairs that are saved on the signature pool. Each iteration visits the

next level of the HSM trees.

The iteration stage finishes when there are no more decomposable segments on the shape pool and

the algorithm ends by returning this data structure which contains the segments that are going to be

used to index the collection in the retrieval framework.

3.1.2 Adapted CaS for Object Decomposition

As the main goal of this dissertation is to adapt the Original CaS to perform segmentation in collections

of 3D objects, the architecture was changed. After presenting the overview of the riginal CaS we now

present an overview of the Adapted CaS, represented on Figure 3.2. Comparing both architectures in

Figures 3.1 and 3.2 it is possible to observe the main differences.

One of the architectural difference is that the shape pool was substituted by the signature pool. In

the Original CaS the main goal was to return all the segments resulting of the various decomposition

levels for the retrieval framework, so it needed to save the segments in the shape pool. Now, the goal

of the Adapted CaS is to decompose collections of 3D objects, but instead of having the signature pool

with all the segments and respective information like the signatures, the signature pool just contains

the signatures of all segments and is only used to label a segment as decomposable or not, improving

algorithm efficiency.

Without the signature pool, we no longer create the second hierarchical tree, which was built during

the iteration stage of the Original CaS to help guide the iteration by informing the next segment to be

processed. Instead, the Adapted CaS uses two lists, the Non Decomposable List (NDL) and the Non

Segmented List (NSL).

Another main difference is that to start the segmentation, first, in the initialization stage, all roots of

the HSM’s are saved in the NDL so they can be processed in the first iteration.

In the end, this approach returns the Decomposed Models Collection which contains all the decom-

posed objects that result from the Adapted CaS approach.

This section was only a brief overview of the Adapted CaS and main differences between both ap-

proaches. The next sections explain in more detail the data structures used, the stages of the approach

and in the end how all of these are combined.
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Figure 3.2: Overall architecture of Adapted CaS, with the two stages (Initialization and Iteration).

3.2 Data Structures

During the execution of the CaS approaches data structures are used to save segments and to help the

iteration stage. Some of these structures are built in the initialization stage and others in the iteration

stage. These data structures are also one of the main difference between original and the Adapted CaS

approaches. The first used two hierarchical trees, one created on the initialization stage using the HFP

and other built on the iteration stage. The Adapted CaS approach uses just one hierarchical tree and

two lists of segments (NDL and NSL), being that both the tree and NDL are built on the initialization

stage while NSL is built on the iteration stage.

3.2.1 Hierarchical Tree

The segmentation process of the CaS algorithm is based on a hierarchy of segments. The original CaS

presented by Alfredo Ferreira et al. in [10] used two binaries trees. The Adapted version presented on

this document uses only one binary tree.

In the first presented approach, the Hierarchical Segmented Mesh (HSM) is generated during the initial

phase of the technique, using the Hierarchical Fitting Primitives (HFP, [4]) algorithm. This generates a

hierarchical tree (Figure 3.3) that is build bottom to top. It starts on the end of the leafs of the tree,

where each represents a cluster that is a triangle of the mesh, then it merges pairs of clusters forming

new clusters that are then the parents of these pairs of clusters. The segments that are merged, are the

ones that have lower cost of merging. This cost is calculated by fitting the cluster to each primitives, a

plane, cylinder and cone, forming a new cluster. The process repeats until it reaches the top of the tree,

where the entire object is represented.

In the Original CaS approach, this tree supports the iteration phase. It is used to build the second

tree, since it contains the information of the next segments that are going to be processed. That is, the

25



Figure 3.3: HSM tree produced by the HFP algorithm in the initialization stage.

Shape Pool

Figure 3.4: Tree produced by the Original CaS algorithm in the iteration stage.

HSM tree is built in the initialization phase and contains the hierarchy of segments since the object that

is located in the root, to the leafs that contains the mesh triangles. The second tree is generated using the

previous HSM to obtain the information of the next segments to be considered in the next iteration. This

tree is built in the opposite direction of the first tree, top to down, starting on the root that represents the

initial object, and transversing until it reaches the nodes that cannot be decomposed. This tree is actually

saved on the shape pool (Figure 3.4) and it is formed by segments that have the information of the child

and parent nodes, making it necessary to access many times the shape pool during the iteration phase.

In the end of the iteration the shape pool containing all the segments discovered during the iteration is

returned and then used on the next stage of the retrieval framework.

One of the architectural changes was to substitute the shape pool by the signature pool. So, the

Adapted CaS just uses the HSM tree that is the same used in the Original CaS and is previously

described. Then, in the initialization stage the roots are saved in the NDL and in the iteration stage the

HSMs are transversed from the root to the leafs and the nodes that are important for the segmentation

are provisionally saved on the NSL.
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Signature Pool

Non Decomposable List

Figure 3.5: Representation of the Signature Pool and the NDL used on the Adapted CaS at the end of
the execution filled with the final segments of the decomposition.

3.2.2 Signature (SHA)

The signature are descriptors which, in this work, are described by the Spherical Harmonics which are a

numerical representation of a 3D object. It represents a 3D object as a point in a multidimensional space.

In this particular case it makes the comparison of two objects easier to do since it is only necessary to

compare two values, calculating the difference between both values using Euclidean distance 1.

If the difference is low, then they are close in the space, means that they are similar otherwise meaning

that they are different.

3.2.3 Signature Pool

There is no longer a shape pool, so it was necessary to have a set to save the signatures as the segments

need to be compared to each other. The Shape Pool was substituted by a signature Pool making the

comparison faster and easier to do, thus it is not necessary to access the shape pool and build a tree

inside the shape pool. Instead it just iterates the list producing a faster approach.

Each segment on NDL has a pointer to the respective signature that is saved on the signature pool.

Whenever it is necessary to label a segment, it just iterates the signature pool and compares the object

signature with all the signatures. In Figure 3.5 these two data structures and their links are represented.

The signature pool has all the signatures found during the process of decomposition, while the NDL

represented on the figure has just the important segments of the segmentation process to clarify the

operation.

This figure shows that although the object is eliminated from the NDL, its signature remains in the

signature pool so the next segments to be labeled are compared to it.

3.2.4 Non Decomposable List

As the new algorithm only uses one tree it is necessary for the algorithm to know which segment is going

to be processed. For that, it is used the Non Decomposable List (NDL). This list contains the segments 2

that are going to be processed and also the segments that have been processed but are not decomposable.

In the beginning, during the initialization stage, this list is filled with the objects of the collection

that are going to be segmented. Then, the iteration stage is the iteration of this list itself. It starts on

1Euclidean distance measures the distance between two points in the n-dimensional space, and is given by the
Pythagorean formula. Euclidean distance: d2(x, y) =

√∑n
i=0(xi − yi)2

2Segment is a node of the HSM produced by the HFP approach.
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the first element of the list, and then proceeds until it reaches the end of the list. This iteration proceeds

by verifying if each segment on this list is decomposable, if so, it decomposes the segment, removes it

from the NDL and passes to the next element, otherwise it just passes to the next element. When it

reaches the end, it verifies if the NSL is not empty, if not it appends the segments of the NSL to the end

of the NDL and restarts a new iteration. In the other hand, if the NSL is empty, it ends the algorithm

and returns the entire NDL. The purpose of this list is also to understand which are the segments that

belong to the final decomposition.

3.2.5 Non Segmented List

Each iteration visits a level of the HSM. The first iteration visits the first node of the HSM (the entire

object). In the second iteration, the child nodes of the first segment are visited in the case of being

decomposable, and so on, until there are no more decomposable segments. So, just using the NDL was

not enough because each iteration would not be executed level by level. Also on each iteration the

segments that were labeled as non decomposable need to be processed with the new segments.

That is why we create the Non Segmented List (NSL). It contains the segments to be processed, found

in each iteration. On each iteration in which a segment is decomposable, it goes to the HSM to get the

child nodes of this segment, then it adds them to the NSL and removes the parent node from the NDL.

At the end of the iteration, when it reaches the end of the NDL, it verifies if this NSL is empty. If

not, it appends all the segments of the NSL to the NDL, but before adding each segment, it computes

the signature, saves them in the signature pool and erases the NDL. If the NSL is empty, then it means

that there are no more segments to be decomposed, so the algorithm ends.

3.3 Segmentation Procedure

The CaS approach is constituted by two stages. The initialization stage where the data structures and all

bases for the segmentation are built, and the iteration stage where the decomposition is really executed.

3.3.1 Initialization

In this stage all the segmentation foundations are built. Following the fluxogram in the Figure 3.6, the

initialization starts on the first object of the collection and repeats the process for all the objects in the

collection. Each step of the iteration stage is explained in the next paragraphs.
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Figure 3.6: Initialization Fluxogram.
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Compute HSM

The iteration starts by computing the Hierarchical Segmented Mesh using the Hierarchical Fitting prim-

itives. This structure is used to guide the iteration, it has the next segments that are going to be

precessed.

Add HSM to HSM Set

Then, it adds each HSM tree in the HSM Set where all the HSMs are saved . This is accessed when an

object is decomposed and it is necessary to get the child nodes of the HSM.

Compute Signatures

In this step the signatures are computed. These are used in the iteration stage to verify if the object is

decomposable or not.

Add Signature to Signature Pool

Each computed signature is saved in the signature pool, so when it is necessary to verify if the object

is decomposable, it iterates the Signature pool and compares the signature of the segment that is being

processed with the signatures of the segments that were already found, and whose signatures are already

saved in the signature pool.

Add root of HSM to NDL

To finalize, it saves the root of the HSM on the NDL, so the iteration can start by segmenting the initial

objects of the collection.

When it reaches the last element in the collection, the iteration ends and it passes to the iteration

with these structures computed and loaded.

3.3.2 Iteration

The iteration stage is where the decomposition is actually performed and in this approach it corresponds

to the iteration of the NDL itself. It starts on the first element of the NDL and procedes until it reaches

the end of list. In the fluxogram represented in Figure 3.7 are the basic steps of this stage.

Is Decomposable? (step a)

It starts by verifying if the segment is decomposable. As this technique is based on the uniqueness of

an object, the object has to be considered singular to be decomposable. This step is explained in more

detail in section 3.4. If is decomposable, it decomposes the object by passing to the next step. If is not

decomposable and has not reached the last element of the NDL, it just passes to the next element of the

NDL.

Add each child node of HSM to NSL (step b)

In this step it accesses the respective HSM saved in the HSM Set and gets the child nodes which are then

saved on the NSL.

Remove decomposed element of NDL (step b)

Because this approach does not need to maintain all the segments found during the decomposition, the

object that is decomposed is eliminated from the NDL so it cannot be processes again.
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Figure 3.7: Iteration Fluxogram.

Is element the last of NDL?

Then it verifies if it has reached the end of the NDL, which is the end of the iteration. If it has not, it

passes to the next element of the NDL, otherwise it passes to the next step.

Is NSL empty? (step finalize)

The NSL contains the segments to be processed on the next iteration, so it is necessary to verify if it is

empty. If the NSL is empty the iteration stage ends. If not, it is going to finalize the iteration.

Compute signature for each element on NSL (step finalize)

When a segment is decomposed, the signatures of the child nodes are not computed since the approach is

executed level by level of the HSM. The signatures of each segment found on each iteration are computed

on this step, meaning that they are only computed before starting a new iteration, the iteration where

these segments are going to be processed.

Append NSL to NDL (step finalize)

After computing all signatures of the NSL, it appends all elements of the NSL to the NDL, so these

elements can be processed on the next iteration.

Clear NSL (step finalize)

In the end of the step finalize it is necessary to clean the NSL so the new segments found on the next

iteration can be saved.
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When the step finalize ends, a new iteration starts in the first element of the NDL. This process

repeats until the NSL is empty which means that there are no more segments to decompose, so it ends

by returning the NDL that contains all important segments that are going to form the segmented object.

Observing the pseudo code in section A and analyzing the execution of the approach, more specifically

the iteration stage, it is possible to evaluate the algorithm complexity. Being N the number of elements

on the NDL, in the best case the complexity is f(N) = Ω(N), because all the objects of the collection

are not decomposable, so, it just iterates the NDL once. In the worst case it reaches the maximum

deepness predefined, so the complexity is O(2
(depth−1)

.N). The complexity of the algorithm is O(N)

because O(3N) = O(2N) = O(N), so it does not depend on the number of times that the collection it is

going to be decomposed, but on the NDL size. These results are proved on the section 4.3.1 where a test

to the time spent on the execution of the technique was tested.

The following schemes represented in the figures 3.8, 3.9 and 3.10 represent an example of the execution

of the iteration stage for a better understanding of the proposed algorithm. Although the figures represent

the execution of the iteration stage for just one object that is going to be segmented, in reality the iteration

segments the entire collection by traversing each CaS tree level by level.

Starting at image 3.8, we can see that the process begins with the entire object. First it verifies

if the segment is decomposable or not (Iteration 3.8 Step 1. a). It is decomposable, so it goes to the

respective HSM to get the child nodes (left, and right), saves the child nodes on the NSL and deletes the

decomposed segment of the NDL (figure 3.8, iteration 1, step b).

Because on this example it has only one element, by removing it from the NDL, the NDL becomes

empty, so it has reached the last element of the NDL. The next step is to verify if the NSL is empty

(Figure 3.8, iteration 1, step finalize), in this case is not, so the next step is to first compute the signatures

of each element of NSL, adding them to the signature pool, then appends the segments of NSL to the end

of the NDL, removes all elements of the NSL and restarts the iteration, passing to iteration 2. We can

see in the image that only one node of the tree has been visited in the first iteration (figure 3.8, CaSTree

on Iteration1). The CaSTree represents the traverse of the HSM, showing which nodes of the tree were

visited during the execution of each iteration.

The new iteration starts similarity to the previous, by visiting the first element of the NDL (Figure

3.8 Iteration 2 Step 1. a) and verifying if it is decomposable. In the figure it considers that the object is

not decomposable, so it passes to the next object on the NDL. But the second element is decomposable,

so it decomposes it, adds the child nodes on the NSL and repeats the process previously described. In

this second iteration, it has visited three nodes of the HSM (figure 3.8, CaSTree on Iteration2).

The figures show that the process repeats (figures 3.8, 3.9 and 3.10) until it reaches the last element

of the NDL and confirms that the NSL is empty (figure 3.10 Iteration 4 Step Finalization a) meaning

that there are no segments to append to the NDL, thus that are no more decomposable segments and

that it has reached the final decomposition. In the end, all the important nodes for the decomposition

are returned and the entire object is built with the segments resulting of the segmentation and saved in

the Segmented Models Collection.
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Figure 3.8: Example of an execution of the iteration stage, representing iteration 1 and 2.
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Figure 3.9: Example of an execution of the iteration stage, representing iteration 3.
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Figure 3.10: Example of an execution of the iteration stage, representing iteration 4.

3.4 Adapted CaS/HFP Decomposer

After understanding how each component and stage of the technique works, this section describes the

interaction between them and how the entire approach works. The figure 3.11 represents the overall flux-

ogram, showing both stages, the initialization stage where the inputs of the iteration stage are computed

and saved, and the iteration stage where the segmentation is actually executed.

The CaS/HFP Decomposer starts by receiving the entire collection of objects on the initialization

stage. On this stage for each object it computes the respective HSM using the HFP which generates a

binary tree built bottom to top. It starts on the leafs which represent the triangles of the mesh, then

for each pair of neighbors it calculates the merging cost. This cost is calculated by fitting a primitive

(cylinder, cone, sphere and plane) to the resulting cluster, then it compares the values and clusters the

pairs that have lower cost. This new cluster generated from the clustering is saved as a parent node of

these clusters, in the tree. It repeats the process until it reaches the top of the tree where the entire

object is saved. This tree will be traversed during the iteration stage and contains the segments that

are going to be important for the final result. After computing these trees, the initialization stage saves

them on the HSM Set.

Because the decomposition algorithm is based on the singularity of an object, the second step of

the initialization stage is to compute the signatures of each object. These are shape descriptors, a

numerical representation of the object in a multidimensional space. Using these representations makes

the comparison between segments easier and this is used to label a segment as decomposable or not.

When each signatures finishes being computed, it saves them on the signature pool.

The initialization stage ends by adding all the roots of the HSM on the NDL. This list contains all

the segments that are going to be processed and all the segments that were labeled as not decomposable.

Observing figure 3.11, it is possible to visualize that after adding the HSM nodes to the NDL the
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initialization stage ends, so it passes to the next stage, the iteration stage. This will use all the structures

previously built.

During the execution, the iteration stage traverses the HSMs, level by level, that is, each new iteration

corresponds to a level on the hierarchy. In order to support the segmentation, the iteration stage uses

the NDL. In practice, each iteration of the stage is an iteration to the NDL starting by visiting the first

element of the NDL and verifying if is decomposable or not.

Like was previously referred, the CaS/HFP segments the objects based on the collection where they

belong. The figure 3.12 represents the steps for labeling a segment as decomposable or not. It first

verifies if has reached the minimal triangle count by calculating the minimal number of triangles between

both child nodes and compares this minimal with a previously defined value, the minimum triangle count

threshold, which in this case is three. If the minimal is below the minimum triangle count threshold the

segment is decomposable, otherwise the segment is labeled as non decomposable. This step prevents from

reaching the triangles of the mesh.

In the case of the result being no, it passes to the next step that is the execution of the K-Within

Range (K-WR). This algorithm is used to verify if a segment is singular. In order to accomplish that

verification, two thresholds were previously defined, the similarity and similar count thresholds. The

first threshold is used to verify if two objects are similar or not. To be similar, the distance between

two objects on the multidimensional space has to be less them the similar threshold, which is computed

using the segments signatures and the difference between them. Then, the second threshold is used when

comparing a segment with all the segments that are on the shape pool, as it cannot have more similar

segments than the similar count threshold. With this result it is going to verify if the segment is singular.

To be singular the number of similar segments has to be above the similar count, so if it is the case, then

the segment is labeled as decomposable. If not, is labeled as not decomposable.

If the segment is decomposable, then it is going to decompose it. For that, it goes to the respective

HSM and get its child nodes, then inserts both nodes in the NSL, which contains the segments that are

going to be processed on the next iteration. Finally, it removes the processed element from the NDL

passing to the next element on the NDL that also will be processed. In case of the segment being not

decomposable it passes to the next element on the NDL.

An iteration ends when it reaches the end of the NDL, although the iteration stage may have ended

or not. This depends on the NSL. If the NSL is not empty it means that there are new segments to be

processed. So, it appends all the elements on the NDL, removes them from the NSL and then restarts a

new iteration by vising the first element on the NDL again.

The iteration stage and the entire technique ends when it has reached the end of the NDL and the

NSL is empty, meaning that there are no more segments to be decomposed. So, the technique ends by

returning the entire collection of decomposed objects.

The execution of the Manual Segmentation Test using HFP, detailed on section 4.2, consisted on

asking the users to segment a collection of ten objects randomly chosen and then interpret the results to

understand how human segment the object. One of the complains of the users was that some objects were

over segment. This happened because the HFP approach was used. In the same section the limitations

found during the test are also detailed.

After executing the Adapted CaS approach with different similarity and similar count thresholds we

noticed that this problem still happens on this technique, so, to overcome this limitation we introduced

a new feature. The introduction of the Geons to verify if an object is decomposable or not, gives rise to

a different technique, the Geons-augmented CaS. The next section explains this technique and the main

differences between both.
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Figure 3.11: High level fluxogram of Adapted CaS approach.

3.5 Geons-augmented CaS/HFP Decomposer

The Geons are simple 3D objects, like cylinders, cones, cubes. The theory proposed by Bieldman on [8]

called “Recognition by Components Theory” defends that just like English words are constituted by a

number of phonetics. Complex objects can also be composed by these simpler 3D objects, that is, by

segmenting these complex objects we get these simpler objects (Figure 3.13). Another property of the

Geons is that using different arrangements of the same Geons can produce different objects. Geons are also

view-invariance, so they do not depend on the point of view of the camera, which has been contradicted

by recent studies where they defend that the 3D object recognition can be viewpoint dependent. Geons

are also stable or resistive to visual noise. They can have other objects in front, an occlusion, and are still

recognizable. The last feature of these objects is discriminability, meaning, that they can be distinguished

from the others on different view points.

In Figure 3.14 the architecture of the Geons-augmented CaS is represented. The main difference

between this approach and the Adapted CaS is the collection of Geons. This is used to verify if an object

is decomposable or not. Because Geons-augmented CaS approach uses the HFP which, in turn, uses

primitives to calculate the cost of merging clusters, and also because some of the Geons are the same

as these primitives, then using these objects can help to stop the segmentation when it finds a Geon.

Image 3.15 represents the decomposition fluxogram, which is similar to the figure 3.12 and description

of section 3.4, being the main difference that after the first comparison, if the minimal triangle count of
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Figure 3.12: Fluxogram for segment decomposability identification of Adapted CaS.
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Figure 3.13: Example of group of Geons used on the approach.

the child nodes is above the minimum triangle count predefined, then it compares the segmented with

the entire collection of Geons using the distance between both signatures. Then, if it is not similar, it

proceeds as the previous description, that is, it executes the K-WR. Otherwise, the segment is labeled as

not decomposable.

In order to compare the segments to the Geons it is necessary to predefine the best similar values

between them. So, the best values for the similarity thresholds between the segments and the Geons were

studied. To compare objects we use, as was already referred, the Spherical Harmonics (SHA), which one

of its characteristics is the rotation invariance that is, two objects are detected as similar even if they

are in a different position in space. But this are not scale invariant, that is, it takes into account the

scale when comparing to objects, using the difference between signatures. So, it was necessary not only

to discover the best similarity threshold for the usual Geons, but also to perform a profound study about

the different scales and different smooth variations on the Geons shape to really overcome this problem

of scale invariance.

Model 
Collection

Signature
Pool

HSM Set

Initialization

HFP

SHA

Iteration

Decomposed 
Models 

Collection

SHA

NDL NSL

Geons 
Collection

Figure 3.14: Overall architecture of the Geons-augmented CaS, with the two stages (Initialization and
Iteration).
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Figure 3.15: Decomposition fluxogram of Geons-augmented CaS.

On this stage of the thesis a study was performed on the cylinder. For that, several different types

of cylinders were used. Figure 3.16 are represents the different variations of cylinders, some of which are

closed both on the top as on the bottom, some have a hole from one side (top) to the other (bottom) but

still has some thickness on the sides. And others are totally open, without a base or a top. Also the non

scale invariance is shown on image 3.16, for instance, looking at cylinder 2 and cylinder 3 it is obvious

that the shape is the same but the scale is different. As this study was only about the cylinders, it is

necessary to perform a similar future study with the remaining Geons.

As one of the primitives used on the HFP is the plane, this primitive was added to the group of Geons.

But still this is one of the main problems of using HFP. Using planes makes the results of segmentation

as a plane instead of a volume as it should be, meaning that the Geons like the cube do not work on

this approach. Thus, a good path to follow in the future is to use another approach instead of HFP and

make a deeper study of these thresholds.

After performing a test to evaluate the similarity threshold between the objects and the Geons the

final values of the similarity threshold that are predefined on the approach are between 0.10 and 0.35.

Cylinder 1 Cylinder 2 Cylinder 3 Cylinder 4 Cylinder 5 Cylinder 6

Cylinder 7 Cylinder 8 Cylinder 9 Cylinder 10 Cylinder 11 Cylinder 12

Figure 3.16: Set of cylinders used to stop from over segmenting,
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Feature
Original
CaS

Adapted
CaS

Geons-
augmentd
CaS

Uses two hierarchi-
cal trees

X

Uses one tree and
two lists

X X

Uses a Shape Pool X

Uses a Signature
Pool

X X

Uses Geons X

Receives as input
the thresholds

X

Outputs segments X

Outputs the collec-
tion of decomposed
objects

X

Table 3.1: Table with the main differences between Original, Adapted and Geons-augmented CaS algo-
rithms

3.6 Summary

On this section we described two different segmentation approaches that were based on the original

approach called Collection Aware Segmentation. These approaches were compared and their main dif-

ferences were highlighted.

The first approach to be developed was the Adapted CaS approach that consists on segmenting

a collection of objects automatically based on the geometric similarities of elements in the collection,

producing meaningful results to the user.

After executing the Manual Segmentation Test Using HFP, some problems where detect, like the

over segmentation of some objects. To overcome this limitation, a new characteristic was added to the

technique, which was the use of Geons to label a segment as decomposable or not.

Based on the classification in Section this approach is classified as Part Based because it produces

meaningful segments using a Surface Based approach, the HFP.

The main differences between the three approaches are shown in Table 3.1. The first difference is in

the data structures used. The Original CaS used two hierarchical tress and a signature pool to save all

the segments during the decomposition. However, both Adapted and Geons-augmented CaS approaches

use only one tree, two lists, and a signature pool. With these changes the two approaches have become

faster than the Original CaS.

The next depicted feature was Geons which is only used on the Geons-agumented CaS that was used

to solve the over segmentation limitation of the Adapted CaS.

As one of the goals of the Adapted CaS was to have an automatic segmentation, the Original CaS is

the only approach that needs to receive as input the similarity, similar count and depth thresholds. On

the opposite, for Adapted CaS and Geons-augmented CaS approaches, these are predefined.

The Original CaS was integrated into a 3D object retrieval framework as a stage, so it returned the

entire shape pool with all the segments discovered during the execution of the approach. The purpose

of this thesis was also to prove that it was possible to isolate the Original CaS from the framework and

produce different approaches that segment a collection of objects. Two approaches were implemented,

the Adapted CaS and Geons-augmented CaS approaches, both of which return the entire collection of

decomposed objects.

In the following chapter we discuss the evaluation of our work and the main experimental results.
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Chapter 4

Experimental Evaluation

After completing the algorithm implementation, it was necessary to verify the efficiency and effectiveness

of the algorithm, refine the approach and finally, test the segmentation results quality. Several tests were

performed.

The Manual Segmentation Test using HFP, was used to understand the human interpretation of an

object, more precisely, how humans segment 3D objects. With this information it was possible to refine

the approach.

Performance tests were used to evaluate the approach efficacy and efficiency. Time and memory

consuming of the algorithm were compared with the Original CaS approach values.

The User Evaluation of CaS/HFP test propose was to evaluate the quality of the approach and

demonstrate that the Geons-augmented CaS results improved comparatively to the Original CaS ap-

proach.

All experiments were performed on a computer equipped with an Intel CoreTM2 Duo P8600 @

2.40GHz, 4 GB of memory, and a Windows 7 operating system.

4.1 Prototypes

Tests execution requires different prototypes depending on the purpose of each test. Two different types

of prototypes were used:

User tests were done using user interface based prototype, for understanding how human decompose

3D objects and to evaluate Geons-augmented CaS results quality and were used to interact with the

users.

Performance tests where done using command-line based prototypes calling different CaS implemen-

tations to compare.

4.1.1 User Interfaces for evaluation

As some tests require user feedback, it was used two different tools from Shade WorkBench application.

Shade WorkBench is a web application which allows an easy addition of new techniques for shape de-

scription, similarity computation, object segmentation, retrieval evaluation and best view computation.

This application was developed by Tiago Lourenço in his master thesis entitled ”ShaDe Workbench: 3D

Shape Descriptor Workbench” (which has no published articles yet).

The Manual segmentation prototype was used for users decompose each object of a collection while

the Comparison prototype was used for users compare pairs of segmentation results choosing witch

segmentation results produces the most meaningful segmentation
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Figure 4.1: Shade Workbench manual segmentation tool interface with a segmented object with a level
choice.

Manual Segmentation

In order to perform the Manual Segmentation Test Using HFP was developed a prototype (Figure 4.1)

where it was possible for users manually segment an object. The users by changing the tree level, chooses

which the results represents a segmentation more meaningful to him. At the end, the application saves

a XML document with the tree level chosen, the respective number of segments and the time it took for

segment each object.

For the CaS Evaluation With Users Test it was necessary to repeat the Manual Segmentation Test

Using HFP but using a different collection of objects. The manual tool was again used but with a variation

(Figure 4.2). Instead of changing the tree levels, users changed the number of segments produced by the

results. The objective of this variation was to compare the Geons-augmented CaS results with manual

segmentation and Original CaS results.

Figure 4.2: Shade Workbench manual segmentation tool interface with a segmented object with four
clusters.
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Figure 4.3: ShadeWorkbench comparison tool interface with two different segmentation results.

Comparison

This prototype (Figure 4.3) was used to demonstrate the quality of the system at the level of the human

interpretation. Users were asked to compare pairs of segmentation results and choose which one is more

meaningful or both.

4.1.2 CaS Prototypes

After defining each CaS architectures, each correspondent prototypes were implemented using the c++

language, producing a command-line based application.

It receives an input on the command line and the output is saved on a specific folder. These prototypes

were used to prove the approach efficiency by using the time, memory used values and also by comparing

all CaS approaches (the Original, the Adapted and the Geon-augmented CaS ).

Original CaS

The original approach produced a command-line based prototype, and was used to compare its results

with the results of the Adapted and Geons-augmented CaS approaches.

To execute the time and memory test, the Original CaS prototype needs important information.

Special key words are used to assign the inputs to the information. Like the important thresholds, depth,

similar count and similarity. The directories, where the collection of objects to be decomposed is, and

where and name of the XML document where the printable results are saved. Also the extension of the

objects (STL or OFF files) that belong to the collection and the format of the segments resulting from

decomposition (VRML or DAE).

The decomposition results, that is, the elements of the shape pool are saved on the same directory as

the executable.

These input’s are not always the same, for more detail, it can be used the help command to explore

all the options of the application.
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Adapted CaS

The Adapted CaS approach receives a set of parameters and returns the collection of segmented objects.

In the Adapted CaS prototype the decomposed collection are saved on the directory given by the user

as input. It was also added a parameter in case of having to save the segments resulting from the several

levels of decomposition.

This prototype also receives the same type of objects and save the decomposed objects as the previ-

ously described prototype.

Geons-augmented CaS

This technique is an extension of the Adapted CaS, where the comparison between segments and Geons

was added. So, it proceeds exactly as the previous. The main difference between the Adapted CaS

prototype and the Geons-Augmented is the produced results.

After having performed all the tests, the final prototype does not need to receive the thresholds, as

the study was to define these values.

This prototype also receives the same type of objects and save the decomposed objects as the previ-

ously described prototype

4.2 Manual Segmentation Test Using HFP

This test was performed in order to understand the human perception of an object, specifically, how

does a person segment a given 3D object. The two-stage test began with a questionnaire. It had the

purpose of identifying the characteristics and prior related experience of the test users. Following the

questionnaire, the users were instructed on how the test would proceed and given the opportunity to try

the tool. On the second stage of the test, the users were asked to segment an object using the Shade WB

segmentation tool that uses the HFP.

4.2.1 Sample group

The sample group consisted of twenty users. Each one was identified by a number and was asked to fill

in a questionnaire that gathered the following data about the user: age, gender, school degree, computer

experience and, finally, 3D modeling experience.

With this information it was possible to conclude that the sample consisted of users with age between

twenty one and thirty four years old. Fifteen were male and five were female. Eighteen elements of the

group have an academic degree, with the remaining two having the twelfth grade. The sample is also

constituted by a group of experienced computer users, with nine having some 3D modeling experience,

unlike the rest of the elements.

4.2.2 Test Set

The CaS technique was tested using the Engineering Shape Benchmark. This ESB is a collection of

three-dimensional objects of engineering. Most of these objects are not very familiar to the users, so they

allow an instant interpretation, instead of biasing the results with a preconceived interpretation that the

users might have in mind. For this test, each user was asked to segment the same ten objects from this

collection (4.4). These were randomly chosen from the ESB. This collection is detailed on the appendix

(B).
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Object 1 Object 2 Object 3 Object 4

Object 5 Object 6
Object 7

Object 8 Object 9
Object 10

Figure 4.4: Collection of objects used in the test

4.2.3 Description

As the main goal of this test was to understand the human perception, the user was asked to manually

segment a collection of objects. For that purpose, the prototype described in section was provided to the

user..

The HFP is an approach that uses hierarchical clustering, that is, it generates a hierarchical binary

tree by clustering the triangle meshes. It starts on the bottom of the tree, where each leaf represents a

triangle of the mesh and then it clusters the triangles that have lower cost to merge, building the tree

from bottom to top. The cost is calculated by fitting the resultant cluster to a primitive (plane, cylinder

and cone).

As this algorithm produces a hierarchical tree, it is necessary for the user to choose which level

produces a more meaningful result. So, the only task the users had was to select different levels of the

tree using the scroll, observe the different results and then choose the result which had, in their opinion,

the most meaningful segmentation.

Before the actual test, each user was given a test object, so that he could try the application and

clearly be familiarized with the way it worked. The user had five minutes to explore the segmentation

tool by choosing different levels, increasing and decreasing the object size and rotating the object.

Then, the user was shown each element from a collection of ten objects (image 4.4). The objects

appeared in a random order, for each user. After the user having observed each result and chosen the one

that produced a more meaningful segmentation, the choice was saved for analysis. The collected data

consisted of the level of the hierarchy and respective number of segments, as well as the time it took to

segment each object, later used to understand the complexity of each object and the difficulty felt while

choosing a level. The test protocol can be found in the appendix E.1.

4.2.4 Results

With all the test sessions successfully completed, it was necessary to analyze the results. The data

analyzed in this section pertains to the number of segments of the chosen segmentations and to the time

users spent to select each result.

Number of Segments

This section analyzes the results, comparing the different choices and returning the number of segments

of the most chosen segmentation of each object. In order to understand and analyze the conclusions it
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Figure 4.5: Results of user choices for object2
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Figure 4.6: Results of user choices for object9

was necessary to complete the study using the tables and conclusions that are on the appendix C.

As in the test the users chose tree levels instead of the number of segments, and also because the

tool uses a binary hierarchical tree, the number of segments varies even if the tree level is the same for

different objects.

The Table C.2 of the Appendix C.2 was used to identify the number of segments for each of the most

chosen segmentations. This showed not to be enough and it was necessary to understand not only which

number of segments had more choices, but also how many choices it got and if it is the only choice. This

kind of analysis was supported by bar charts that represent the amount of users choices per object (at

Appendix C.3).

The sample group clearly agreed on some objects. That is, the number of segments that each user

chose is really close to the choices of most of the other users. A situation like the one represented in

image 4.5 of object 2 where most of the users chose the result with two segments, because these are simple

objects and the HFP generated simple results that were satisfactory to the user.

Other objects did not appear to have a segmentation that pleased the users. Object 8 is an example.

In spite of being a simple object, its results of the segmentation did not match the user expectations. As

we can see in image 4.4, object8 is constituted by cylinders and spheres, so the user expected to have a

segmentation in which each of these constituents belonged to a different segment and also the piece at

the center. This did not happen because the algorithm uses a hierarchical binary tree so, when it finds a

cylinder and a sphere, the rest is still attached to the body center and, when fiddling a second pair, the

previous one is again decomposed, causing an over segmentation (Figure 4.7). Still, users prefer to either

have over segmentation but with all constituents separated or have the entire object as one segment.

For object 9 it is not so easy to come to a conclusion, the result, as it can be seen in image 4.6,

is very ambiguous, because it has seven different numbers of segments in which the users are divided

between having just one or two segments and eight or sixteen, representing a wide range of values. This

seems to have happened because it was hard for the user to understand the object and also because

the segmentation results were not the expected, so some found that the better choice is the entire, not

segmented, object.

Time

The table C.3 of appendix C.2 represents the time it took each user to segment each object of the

collection. The two last columns of the table represent the total amount of time it took to each user

segment an object and the average time it took the user to segment each object of the collection. The last

line has the average of the time it took to segment each object. With this information we can conclude

that, in average, each user took 10:36 minutes to segment the entire collection.
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Figure 4.7: Representation of object 8
with a segmentation result of a choice of
level 6

Figure 4.8: Representation of object 4
with a segmentation result of a choice of
level 4

As it is shown in table C.3,the object that took more time was the object 9, with an average of one

minute and thirty four seconds. This means that it can be considered a difficult object to segment and

the results presented were not the expected. This can also be observed in the previous section (4.2.4)

where there are many different choices for the number of segments. On the contrary, the object that took

less time to segment was the object 7 meaning that the users chose the segmentation that they consider

more meaningful faster. This happened partially because is an object with a familiar shape, similar to a

hammer.

4.2.5 HFP limitations

With this test it was possible to understand some limitations of the used algorithm. Because the HFP

generates a hierarchical tree, the first limitation that occurs is that some segments are over-segmented

while others are not. For instance, when it is traversing the object 8, HSM first founds a stick with a

ball and the rest of the object is another segment. When we choose a level like 6, the stick and spheres

initially discovered are over segmented but one of the sticks and one of the spheres still belong to the

same segment (Figure 4.7), causing some conflicts for the user.

Another limitation is the fact that the segmentation uses planes to fit, so instead of segmenting by

volume, it segments by face. A good example is object 4 because it is very rectangular and makes each

face belong to a different segment (image 4.8).

4.2.6 Manual Segmentation VS Adapted CaS/HFP

As we are aiming for an automatic and meaningful segmentation, it is necessary to define the similarity

and the similar count thresholds. These variables of the Original CaS approach needed to be inserted by

the user. On the Adapted CaS these are predefined so the same values are used for each execution of this

approach. After the execution of Manual Segmentation Test Using HFP and the analysis of its results

(section 4.2.4), the same collection used in the manual segmentation was segmented using the approach

with different threshold arrangements. Then it was possible to compare the user results with the Adapted

CaS results, in order to choose the test which produces the most meaningful results.

These two thresholds are used to label a segment as decomposable or not decomposable. A decom-

posable object has to be considered singular, that is, it cannot have more than a given number of objects

(similar count threshold) similar to him (similarity threshold). To verify if two objects are similar we use

the difference between them. If that calculus is above the similarity threshold, it means that the objects

are similar.

To perform the comparison between the results of the user and both CaS approaches, the CaS
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prototypes were executed using different threshold values. Several other indicators were used for the

comparison: the difference between the numbers of clusters chosen by the user in the Manual Segmentation

Test Using HFP, the number produced by the CaS approaches and the percentages of human choices

for each number of segments. But, after trying several thresholds, it was obvious that just using this

information was not enough because, sometimes, for the same number of segments the result is very

different. So, it was necessary to introduce a classification to understand which values produced the most

meaningful results. This was created by observing and comparing the results.

The results were classified from worst (*) to better (****). The worst (*) results are very different

from the ones chosen by the user. Other results were not so easy to classify, because some have the

same number of clusters but do not actually have the same clusters. Others have a different number of

clusters but are similar, while others, having a different number of clusters, still represent a meaningful

segmentation. To differentiate this objects three more classification levels were created. The medium

(**) classification is used when the number of cluster is near but the segmentation is worst and that are

wrong, that is that are not meaningful for the user. For an object to be classified as good/similar (***),

it needs to have the same number of segments and the same result. The better (****) classification exists

because it was necessary to distinguish the objects where the result produced by the CaS approach was

better than the results produced by the user. This happened because the users felt and stated that it

would be more meaningful to segment the object in some other way.

The best course of action would be to execute another test, where a group of users should classify the

segmentation using this scale and identify which value produces the best segmentation. But because this

is a master degree thesis, the time is very limited. Also, a test of that kind requires lots of effort from

the users so, it was not possible to execute it. We expect that these values will be validated in a future

works.

With these results was possible to conclude that, even changing the thresholds, some objects still

have the problem of over segmentation. To to solve this problem, a different technique was proposed,

using Geons to label the segments. The same comparison was performed, using the new results and its

conclusions are described in the next section.

4.2.7 Manual Segmentation VS Geon-augmented CaS/HFP

After the previous evaluation, one of the main problems found was that some of the results still over

segmented, using the HFP, even with different threshold values. So, to overcome this limitation, a new

feature was added to the approach. It consists of using Geons to verify if an object is decomposable or

not. Geons is a psychology theory of object recognition proposed by Biederman’s in [8]. There are simple

3-dimensional forms such as spheres, cubes, cylinders, cones or wedges. This theory consists of the human

interpretation of objects. While interpreting an object, a human being can detect and segment it using

those simple forms. This means that the objects are constituted by these simple and familiar forms.

A limitation was found when the Geons are parallelepiped, because the HFP uses planes to fit,

producing a plane segmentation instead of a volumetric segmentation. So a future work would be to

use another hierarchical segmentation algorithm and do a refinement to the similarity threshold values

between the segments and the Geons.

To understand which values to use to consider a segment similar to a geon, segments similar to the

geon were compared. It was detected which difference values where enough to consider them similar.

These values vary from 0.10 to 0.35, depending on the Geon.

The evaluation process performed on this section is the same as the last one, that is, the number of

clusters of the Geons-augmented CaS/HFP was compared with the results of the manual segmentation,

using the same evaluation criteria. After analyzing and comparing all the results, the test that presented
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the better results was test 5, with 0.58 of similarity and 1 of similarity count. This test has the higher

percentage of user choices, 5 objects with the same number of segments as chosen by the users and also 2

objects with the best classification. It is not the test with the biggest number of best classification, but

it has 5 good/similar objects, making it, overall, the best of the tests.

4.3 Performance Tests

These tests will evaluate the performance of the algorithm, that is, the time it takes to segment a collection

of objects and how much memory it consumes.

4.3.1 Execution Time

As this approach is destined for the end-user and as one of the main goals was to improve the time taken

to decompose a collection of objects, it is necessary to test the time spent on decomposing the collection.

The approach proposed in this document has some time consuming tasks, like the object signatures

calculations and the distances between them to define the singularity of each segment. That said it was

necessary to calculate the time it takes to execute each task. For that, we used the Geons-augmented CaS

prototype (Section 4.1.2) that executes the Geons-augmented CaS algorithm and saves the time results

to a XML document.

As shown in Figure 4.9 the time is very close to the linear line. It does not superpose the linear

line because of external factors that have influenced some periods of time, such has internet related

connections. With these results it was also possible to prove the predicted complexity of the algorithm,

as estimated in section 3.3.2.

In order to prove the Geons-augmented CaS approach improvement relatively to the Original CaS,

a comparison between the time spent by both approaches was performed, executing the Original CaS

prototype (4.1.2).

This consisted of executing five tests for each approach and then comparing the results. From the first

test to the fifth the collections used were constituted by 60 objects, 210, 410, 610 and 853 respectively.

These used the same objects as the Manual Segmentation, extracted from the ESB.

The first observation is that both algorithms have a linear growing. But comparing them in more

detail (Figure 4.10) reveals that the new algorithm has lower time spent and this difference increases

along with the growing of the collection used on the tests, as shown in figure. With the time values, it

was possible to calculate the percentage of the difference between the times of both approaches. The

first test, with 60 objects, has a difference of approximately 20%. The third test has approximately 28%

and finally the last, with 853 objects, has approximately 30%, meaning that, when the collections of

objects increase, the difference between both approaches also increases, proving the improvement of the

approaches in terms of execution time, which was one of the main goals.

To compare the execution time in more detail, in each step of the approach the the figures 4.11 and

4.12 are used. With this comparison it is easier to understand where the time was spent in each approach.

On both of them, most of the time was spent computing the descriptors and decomposing. This happens

because the computation of the descriptors, the SHA signatures, is, as predicted, a time consuming step.

The same happens with the decomposition, because it embodies the signature computation, where the

differences between the signatures are calculated and the segments are labeled and then decomposed. In

the Original CaS, these steps take more time than in the Geon-augmented, because of the improvements.

The use of two lists instead of a tree, as well as the Geons, decreases the number of segments, so there

are fewer signatures to compute and compare and also less segments to decompose.
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Figure 4.9: Time line of the Geons-augmented CaS approach execution of the various tests
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Figure 4.10: Graphic with the results of both approaches time test

As shown in figures 4.11 and 4.12, the time spent computing the similarities is bigger in the Geons-

augmented CaS than in the Original CaS, because it also compares the Geons with each segment, so it

can be decomposable or not.

After this time analysis and comparison it is possible to conclude that this new approach is an

improvement. This is important, because the users do not want to wait a long time. In spite of that, as

we are dealing with a large number of objects, it still takes a long time to decompose the entire collection,

but if the user submits only one object of the collection, the execution is faster.
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Figure 4.11: Graphic with the results of the Original CaS approach time tests of the relevant steps
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Figure 4.12: Graphic with the results of the Geons-augmented CaS approach time tests of the relevant
steps

49



0

100

200

300

400

500

600

700

60 210 410 610 853

M
e

m
o

ry
 (

M
B

)

Executed Test

Original CaS

Geons 
Augmented 
CaS
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4.3.2 Memory requirements

Another factor that was taken into account is the fact that the algorithm applied to a collection of objects.

The collection used to test the approach is composed by objects of the Engineering Shape Benchmark

(ESB), proposed by the PRECISE group. This benchmark is composed of 3D engineering objects. So, it

was necessary to study the memory requirements for a good execution of the algorithm. For the execution

of this test, both the original and the Geons-augmented CaS prototypes were used.

Comparing the results of both techniques shown on figure 4.13, the Geon-augmented CaS approach

uses more memory than the Original CaS. This happens because more lists are used, besides the Non

Decomposed List (NDL) and the Non Segmented List (NSL), another list is also used, where the signatures

of the Geons are saved, so each segment can be compared to them.

The memory is nowadays a cheap resource which has increased over the years. So, having spending

more memory to get a faster technique, with better results to the users is a good trade-off between these

two important measures.

4.4 CaS Evaluation With Users Test

After having refined the application it was necessary to evaluate the segmentation quality, that is, if

the technique produces meaningful segments to the user and better results than the other approaches,

validating our approach according to the human perception.

The test to evaluate the quality of the technique consisted of mainly two stages. First, the same

test previously described in section 4.2 was executed, with a different collection of ten objects. The

second stage consisted of asking the user to compare the result of the Original CaS with the Geons-

augmented CaS and his previous choices with the results of the Geons-augmented CaS, selecting which

one he preferred using the 4.1.1 prototype.
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Figure 4.14: Collection of objects used in the test

4.4.1 Test Set

Like the test presented in Section 4.2, a collection of ten different objects belonging to the Engineering

Shape Benchmark was used. These objects were also extracted from the ESB and were randomly chosen.

The Figure 4.14 represents the entire collection that was used to execute this test. This collection is more

detailed in appendix B.

4.4.2 Sample group

This test was performed with a sample group of twenty users, different from the one that participated in

the manual segmentation test 4.2. In order to understand the users characteristics, each one was asked

to answer a five question questionnaire, which inquired about the age, gender, school degree, computer

experience and 3D modeling experience.

Based on this questionnaire we observed that the sample group consisted of users with ages between

twenty one and thirty. Four are female and sixteen are male. The majority have an academic degree:

just one only has the 12th grade. All the users are computer experts, with six having no experience with

3D modeling, while the remaining fourteen stated to have some experience working with these tools.

4.4.3 Description

As the segmentation is part based, that is, the produced results have to be meaningful to the human

being, this test consisted of evaluating the quality of the results produced by the approach. For that,

the users were asked to compare the segmentation results of CaS with the ones previously produced by

them.

In order to evaluate this approach with the accuracy, it was necessary to request the users to segment

a new collection of ten objects. In an attempt not to bias the results, the test of Section 4.2 was performed

with a new collection of objects The Shade WB tool was also used, but with a slight change: instead of

segmenting the objects by level, the users could segment by the number of segments. After executing the

Manual Segmentation Test Using HFP, we observed that the users required the possibility of adding just

new segments one by one, because that would be easier to compare with the results of the CaS algorithm

because it produces a different number of segments, not only depending on the tree levels.

After segmenting the objects, the users had to compare the results between the two CaS approaches,

the Original and the Geons-augmented. To perform this test a different Shade WB tool was used: the

51



comparison tool. The user was presented the same object but with different segmentation results that

were generated using the original and Geons-agumented CaS prototypes (Section 4.1.2). The user had to

compare both results and then choose the most meaningful to him. In some situations, both results were

equal or very similar and meaningful for the user, so there was an option to choose both alternatives.

Aiming to prove the quality of the segmentation results, a similar test was performed but using the

Geons-augmented CaS results, which were compared with the ones chosen by the user on the first stage

of the test. With these results it was possible to prove that the goal of having a meaningful segmentation

for the user was achieved. The protocol of the test is available in Appendix E.1, where the test steps are

detailed.

4.4.4 Results

Because each human being has individual features, evaluating the quality of the segmentation proved to

be a hard task to execute. It is not possible to please all the users with the results produced by the

approach. However we try to produce the most meaningful results to the user and, with that, prove

the quality of the solution. So, we will focus on the second stage results, the user results comparison.

This chapter starts with a brief analysis of the first stage, in particular regarding the chosen number of

segments.

Number of Segments

In appendix E.2 is a table with the final results of the user choices, as well as a summary, containing the

number of segments that had more choices for each object.

The segmentation results of some objects generated consensus, with the users choosing the same

number of segments almost all of the times. Others generated very different numbers of segments. This

depended on the complexity of the object and also on the results of the HFP segmentation. These are

not the most important conclusions to take into account on this test, because the results of the manual

segmentation were only used for the next section that has the purpose of comparing them with the ones

produced by the Geons-augmented approach.

Original CaS versus Geons-augmented CaS

As improving the CaS approach was one of the goals, it was necessary to actually verify the improvements

by comparing both of the produced results. So, the user was asked to compare both results and choose

which one is more meaningful to him. The results of both approaches were produced using the same

threshold values. They are: the similar count with 1, the similarity with 0.58 and the depth equal to 20.

These values were found in Section 4.2.7 on manual segmentation versus Geons-augmented CaS/HFP,

where the results of the first segmentation made by users were compared with the results produced by

the Geons-augmented CaS. A classification was assigned to each of the segmentation results and the

percentage of choices was used, so it could be possible to identify the threshold values that produce the

best results.

Because the Geons-augmented CaS is derived from the original algorithm, some segmentation results

are the same. So, as shown in Figure 4.15 the any option was chosen one hundred and one times. The

remaining objects proved to have better segmentation results using the Geons-augmented CaS, as the

Geons-augmended CaS approach has ninety seven choices. The only exception is the object twelve, which

caused some disagreement between the testers. There is not much difference between the two approaches:

just one segment. The Original CaS has four, while the Geons-augmented has three. Counting the results,

three users preferred the Original CaS result.
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Figure 4.15: Results of comparing Original CaS with Geons-augmented CaS

As shown in Figure 4.16 the segmentation result of object 18 produced by the Original CaS approach

has three more segments than the results shown in Figure 4.17, which represents the segmentation result

using the Geons-augmented CaS approach. These three more segments produce an over-segmentation for

the user, so this is one of the objects in which all users have chosen the Geons-augmented CaS approach.

With this information it is proven that the Geons-augmented CaS approach, according to the users,

produces better results than the Original CaS approach.

User Segmentation versus Geons-augmented CaS

The aim of this test is to prove the segmentation quality, given the fact that it focuses on the human

being interpretation. But as has been proved over time, the human being as an individual produces many

different interpretations of the world and in consequence, of the objects themselves. The evaluation of

the results proved to be a challenge but it an effort was made to found the best way to analyze and prove

the quality of the results.

As described in section 4.4.3, the users were provided a tool to compare the results of the CaS

approach with their own. With this comparison it was possible to understand if the results produced by

the approach were worst, the same, or better than the ones chosen by the user.

By analyzing the results on Figure 4.18 it is possible to conclude that, for three objects, it is clear that

the users preferred their results instead of the CaS results. This happens on the more complex objects

where the result produced by CaS can be considered under segmented compared to the users choices.

Two objects of the collection have really a close number of choices between Geons-augmented CaS and

Figure 4.16: Object 18 with a segmentation re-
sult of the execution of the Original CaS ap-
proach.

Figure 4.17: Object 18 with a segmentation re-
sult of the execution of the Geons-augmented
CaS approach.
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Figure 4.18: Results of comparing Geons-augmented CaS with users segmentation

the results produced by the user. The any approach option won on three objects, meaning that either

Geons-augmented CaS has produced a result equivalent to what the users were expecting.

For one object we need to add the total of both and Geon-augmented CaS choices to get a bigger

amount of votes than the user result, as the choices were equally distributed by the three possible options.

With this result is possible to conclude that, for that object in particular, the users were not in consensus.

Overall, the results are still good. The best possible case happened with object 15: the users preferred

the Geon-augmented result to their own segmentation.

As shown in Figure 4.19, the segmentation result of object 18 produced by the manual segmentation

has the same result as the one shown in Figure 4.20, which represents the segmentation result of object

18 using the Geons-augmented CaS approach. This object in particular had nine users choosing both

results, with five preferring their results and six choosing the Geons-augmented CaS approach.

This analysis allowed us to conclude that, apart from a few objects where the segmentation is not the

best for the user, the results for majority of the collection have been chosen by the user as being similar

or better than the one he chose, proving the quality of the results.

Figure 4.19: Object 18 with a segmentation re-
sult of the execution of the manual segmenta-
tion.

Figure 4.20: Object 18 with a segmentation re-
sult of the execution of the Geons-augmented
CaS approach
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4.5 Summary

In this chapter, two different types of tests were performed: tests with users and Performance tests. To

execute these tests, different prototypes were used, in order to accomplish their goals.

The first to be executed was the Manual Segmentation Test Using HFP, which goal was to understand

how humans decompose 3D objects. It consisted of asking the users to segment a collection of ten

randomly chosen objects. To execute this task, the Shade Workbench tool for manual segmentation was

used. With the results of this test, it was possible to conclude that, when the objects are more familiar,

the segmentation chosen by user tends to be the same. When they are more complex the users tend to

be in disagreement. It was also possible to highlight some limitations of the HFP algorithm, like the

over-segmentation when the users try to isolate a feature of the objects, others becoming over-segmented.

After having identified the number of segments with more choices for each object, a comparison

between the user segmentation and the Adapted CaS approach was performed. Then, as the results still

were over-segmented, the approach was again improved, generating the Geons-augmented CaS approach.

The comparison was once again performed, but this time between the user choices and the Geons-

augmented CaS approach and defining the similarity and similar count threshold values.

To test the efficacy and effectiveness two tests were performed. In both the Original CaS prototype

and the Geons-augmented CaS prototype were used. The time test was used to prove that the complexity

of the algorithm, while also comparing the time tests of the Original CaS ] and the Geons-augmented CaS

approaches. This comparison proved the linear complexity and the improvement of the latter approach.

On the other hand, the Geons-augmented CaS requires more memory, because it uses two lists instead

of a tree. Nevertheless, memory is a cheap resource so it is a good trade off to have a faster technique.

The last test was again executed and the users were required to compare pairs of segmentation results

and chose the one with the most meaningful segmentation. First, the users had to compare the results

from the manual segmentation with the Geons-augmented CaS results and then the Original CaS results

also with the ones produced by the Geons-augmented CaS approach. With these results it was possible

to conclude that, comparatively to the Original CaS, the Geons-augmented CaS produces equal or better

results. The second comparison allowed us to conclude that half of the results produced by the Geons-

augmented CaS represented a meaningful segmentation for the users.
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Chapter 5

Conclusion and Future Work

The CaS segmentation algorithm was initially proposed and integrated into a 3D object retrieval frame-

work by Alfredo Ferreira et al. [10]. One of the main goals of this thesis was to isolate the CaS algorithm

from the rest of the application and prove that it produces meaningful segmentation results to the user and

that it could be improved comparatively to the original algorithm, where it uses the segments similarity

in order to organize them.

To achieve these goals the Adapted CaS was developed. This algorithm segments a collection of

objects using their geometric features in order to produce the collection of decomposed objects.

The Adapted CaS starts by creating the foundations, a hierarchical decomposition (HSM ), the Spher-

ical Harmonics and two main lists. Then, it decomposes by traversing the HSM and iterating the lists

which contain the segments that are going to be decomposed or that are not decomposable. To be de-

composable a segment has to be considered singular, meaning that it must have less than a predefined

number of similar segments. Spherical harmonics and the difference between them are used to evaluate

the segmented singularity.

After the execution of the test to understand how human beings segment objects, new changes were

made and the Geons-augmented algorithm was developed. It consists on using Geons to decompose a

segment. These Geons are simple objects, for instance, a cone or a cylinder, with particular characteris-

tics. The main difference of the Geons-augmented CaS is that to be decomposable, a segment must not

only have to be unique, but also cannot be similar to any of the Geons. Spherical Harmonics are also

used for comparing each segment to all the Geons.

In the case of segmenting an object collection, the approaches that segment object by object can take

a long time. So, one contribution of this work is the decomposition of an object collection by decomposing

multiple objects simultaneously.

Another limitation that is very common in these approaches is the need for user interaction. We have

overcome this limitation by predefining the thresholds that produce the most meaningful segmentation

to the user.

With the evolution of the approach to the Geons-augmented CaS, we have overcome the over-

segmentation limitation that was present on the Adapted CaS.

However the Geons-augmented CaS algorithm still has some limitations. The algorithm uses the HFP,

so it has inherited some of the HFP limitations. The main limitation is specifically the plane primitive.

It produces a plane segmentation result instead of a volume segmentation as the user would expect.

Different tests were performed in order to test different features of the technique. In Manual Segmen-

tation Test Using HFP users were asked to manually segment a collection of objects to study how human

beings segment objects.

These results were also used to study which thresholds produce better results, creating an automatic
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segmentation where there is no need to interact with users and to refine the approach.

Performance Tests were also executed to prove the efficacy and effectiveness of the algorithm. On these

tests, the execution time and memory requirements were evaluated. These values were also compared

with the Original CaS and the Geons-augmented CaS approaches. We concluded that even though

the Geons-augmented uses more memory, the time spent on segmenting a collection is less then on the

Original CaS approach, thus improving the overall performance of the approach.

Finally, to prove the quality of the results, a test was performed with users, the CaS Evaluation

With Users Test, where it was required to choose between two results the one which represented the

most meaningful segmentation. The users had to compare the results produced by the Original CaS

and the Geons-augmented CaS which proved the improvement of the results produced by the Geons-

augmented comparatively to the Original CaS. Then, the users also had to compare the results that they

had produced on the Manual Segmentation Test Using HFP with the results produced by the Geons-

augmented, in order to prove the quality of the results produced by the approach. With these results it

was possible to conclude that for most of the objects, the approach produces a meaningful segmentation

Taking into account the referred limitation of using HFP, it is necessary on a future work to study

the possibility of using other hierarchical based segmentation approaches different from HFP.

It also seems promising to experiment other descriptors different from the Spherical Harmonics. Also,

as one of the characteristics of these descriptors is that they are not scale invariant, it is necessary to

perform a deeper study on the Geons, like the one performed to the cylinder, using a range of the same

Geon but with some variances on the shape.

In the future we believe that the proposed approach proves to be a robust, stable and scalable solution

to the decomposition of 3D object collections.
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Appendix A

Geons-augmented CaS Iterator
Pseudo code

To complement the explanation of the iteration stage, this appendix presents a pseudocode of how that
stage works, the CaS -Iterator. This pseudocode is the groundwork for the complexity conclusions.
CaS-Iterator(NDL)

1 while iterationCount <= depthThreshold
2 do
3 for each element in NDL
4 do
5 el is the element of NDL
6 if Decomposable(el)
7 then
8 Add 〈CaSTreeel,childleft

〉 to NSL
9 Add 〈CaSTreeel,childright

〉 to NSL
10 Remove 〈elem〉 of NDL
11
12 if Is-Empty(NSL)
13 then
14 return NDL;
15
16 for each element in NSL
17 do
18 elNSL is the element of NSL
19 Compute-Signature(elNSL)
20 Add 〈elNSL− > signature〉 to SignaturePool
21
22 Append NSL to NDL
23 Clean NSL
24 iterationCount++;

It starts with a cycle that ends in the case of iterationCount being equal or smaller than a predefined
depthThreshold (Line 1). Then, it enters a new cycle by iterating the NDL (Line 3). Next it verifies
if the object is decomposable or not (Line 6). In the case of being decomposable, it decomposes the
object by adding the respective children from the HSM to the NSL ( Line 8 - Line 9) and removing the
decomposed element from the NDL (Line 10). When the iteration of the NDL stops, because it reached
the last element, it verifies if the NSL is empty (Line 12), if it is not, it passes to the next cycle that
is going to iterate the NSL (Line 16) to append each element of the NSL to the NDL. So, it starts by
calculating each signature of the elements of the NSL (Line 19), adds each signature to the Signature
Pool (line 2). Next it appends all elements of the NSL to the NDL (Line 22) and finally cleans the NSL
(Line 23). When the iteration finishes its count is increased and a new iteration starts. The algorithm
finishes when the NSL is empty (Line 14).
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Appendix B

Test Set

In order to execute the tests, two collections of objects were created. These are formed by ten objects
that were randomly extracted from the Engineering Shape Benchmark (ESB).

These collections were used on the Manual Segmentation Test Using HFP and on the CaS Evaluation
With Users Test. The collection shown on figure B.1 was used on the first test while the collection of
figure B.2 was used on the second test. Both collections have ten objects because if we had used fewer
objects, it would be not enough to give sufficient information to reach a conclusion. On the other hand,
if the collection was bigger it would take too much time for the user to manually segment the entire
collection, taking into account that segmenting manually an object can take an average of one minute
per object.

Tests of performance also used the collection represented on figure of figure B.1 with more 50 objects
for the first test, the second test had more 200 objects while the third test had more 400, the fourth had
more 600 and finally the last test had all the objects of the ESB which is a total of 853 objects.

Name Image

Object1 advgr01

Object2 aries129a

Object3 ball_return

Object4 BLUCO_412158_II

Object5 CLAMP_SLIDER

Object6 cpe1b1

Object7 ganter_gm_99_2

Object8 gantergn_213-60-b15

Object9 link2

Object10 tom_body

Figure B.1: Collection of objects used in the Manual
Segmentation Test Using HFP

Name Image

Object11 cab_base

Object12 COLLECTOR_40932

Object13 demo08

Object14 disk

Object15 ganter99_8-32-m16

Object16 leftroof

Object17 part06

Object18 ph_driver_prt

Object19 schmersal_st_14_b5

Object20 SUPPORTCYLINDER10

Figure B.2: Collection of objects used in
the CaS Evaluation With Users Test
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Appendix C

Manual Segmentation Test Using
HFP Results

This chapter of the appendix contains the tables and graphics of the Manual Segmentation Test Using
HFP results as well as a resume of the obtained results. It starts with the protocol to the test execution.

C.1 Protocol for User Study

Introduction

For the past years, the human interpretation of the surrounding world has been subject of study in
different areas including computer graphics, which has proven to be a challenge since the human being
is an individual with his own characteristics. This test will more specifically, help to understand how
humans decompose 3D objects.

This study emerges in the scope of the Collection-aware Segmentation project which is a master degree
project in Information Systems and Computer Engineering. The main goal is to simultaneously segment
a collection of objects based on their similarity, while producing meaningful results to user.

As the goal is to understand how human beings decompose 3D objects, this test will consist on one
main step where the users will be asked to segment a collection of objects.

Methodology

To understand how people segment 3D objects, a test with users will be performed. The test consists
on one main step that will be executed on a module of the Shade WB. This provides the segmentation
functionality using HFP.

The test session consists on a total of two steps. These are identified on the next table (Table C.1)
along with the respective anticipated duration time. After the table there is a brief explication of each
one of these steps.

1 Filling in a questionnaire, explanation of the experience
and of how the manual segmentation application works.

5 min

2 Segmentation of a collection of objects. 15 min
Total time: 20 min

Table C.1: Table with the steps and respective estimated time

1. Filling in a questionnaire, explanation of the experience and of how the manual segmen-
tation application works

In the beginning users will be asked to fill in a small questionnaire. This will help to understand some of
the users’ characteristics and if they have already used any modeling tool.

A user gide is given to the users, to guide them through the test. Then, the purpose and the procedure
of the session is explained and finally the first application that he is going to use is presented to him,
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Figure C.1: Shade Workbench manual segmentation tool interface with a segmented object with four
clusters.

so he can explore it and learn how it works. More specifically, it will be asked to segment an object by
choosing different levels of the Hierarchical Segmented Mesh.

To execute this task the user resorts, was previously refered, to the Shade Workbench tool that is
represented on Figure C.1. Initially the entire object is presented to the user, without any segmentation,
that is, it has just one cluster. Then, after having observed the object shape, by rotating and changing
the dimensions, the user has to change the tree level that produces a segmentation result more meaningful
to him. This number is changed using the scroll indicated with the red arrow, to save his choice, the user
has to click on the submit button indicated with the blue arrow.

2. Segmentation of a collection of objects

After finishing the previous stage, the user already knows how the application works. So, in this stage
he will be asked to segment a collection of objects.

In more detail, a set of objects us randomly presented to the user, one object at a time. For each
object the user has to choose which segmentation makes more sense, that is, the user has to try out
several levels of the hierarchy of the HSM and then choose the level that has the number of clusters
which produces a segmentation that he thinks to be the more meaningful to him. This option is then
registered by the application for a later evaluation.

Collection of objects to test

The users will segment a collection of ten objects (Figure C.2) that were randomly chosen from the
Engineering Shape Benchmark (ESB), which is a benchmark with more than eight hundred objects. This
collection of ten objects are randomly presented to the user, thus mitigating the influence of the chosen
sequence on the segmentation results.

Object 1 Object 2 Object 3 Object 4

Object 5 Object 6
Object 7

Object 8 Object 9
Object 10

Figure C.2: Collection of 3D objects to segment.
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Questionnaire

I appreciate in advance for your cooperation in filling in this questionnaire.

1. What is your age?

(a) Between 15 and 20 years

(b) Between 21 and 34 years

(c) Between 35 and 55 years

(d) More than 55 years

2. What is your gender?

(a) Feminine

(b) Masculine

3. What are your qualifications?

(a) 9th degree or less

(b) Between 9th degree 12th

(c) 12th degree or equivalent

(d) Academic degree

4. How do you consider yourself on the use of computers?

(a) Inexperienced user

(b) Regular user

(c) Experienced user

5. Do you have any experience in applications for three-dimensional modulation?

(a) None

(b) Some

(c) Many

I would like to thank you for your participation.
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C.2 Detailed results using tables

In order to interpret the Manual Segmentation Test Using HFP, the results were registered in tables.
The Table C.2 has the number of segments that each user chose and on the last line is used the mode, to
calculate which number of segments has more user choices. However, what happens is that some objects
can have the same number or very close amount of choices for different number of segments.

On table C.3 is the time that each user took to segment each object, and to segment the entire
collection. The tables also presents the average time taken for each object and for the entire collection.
With these values we can conclude that the users took on average, 10 minutes to segment the entire
collection of objects and also that it took an average of one minute to segment each object. Some objects
took more time than others because of their complexity and because of the results produced by the HFP.

C.3 Detailed results using bar charts

In order to have a better interpretation of the results, we used these bar charts, because just the previous
table was not enough, due to the fact that an object can have the same number of user choices for different
numbers of segments.

For some objects it was easier to conclude which is the segment number with the most meaning to the
user just by observing these charts. For objects 1 and 2 for example, most of the users have chosen the
result with 2 segments (Figure C.3 and Figure C.4), then for object 4 the majority of the users prefers
the result with 4 segments and finally for object 8 the result with 16 segments proved to be the most
meaningful.

But for other objects it was not so easy to come to a conclusion because users have chosen a wide
range of number of segments. For these objects, we used pie charts in order to understand how many
and which are the most meaningful results to the user. These are represented on the next section.

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Object 7 Object 8 Object 9 Object 10

User1 2 2 4 4 4 8 2 16 16 16

User2 2 2 8 4 4 4 4 8 16 16

User3 4 2 4 4 16 8 16 30 8 8

User4 8 16 16 14 4 16 16 114 8 16

User5 2 2 8 2 2 8 4 8 1 4

User6 8 2 4 4 8 2 2 16 16 4

User7 2 2 4 14 2 2 2 1 16 4

User8 8 4 31 4 16 8 16 16 55 8

User9 2 2 8 4 8 4 2 1 2 8

User10 4 2 1 1 2 2 2 16 2 1

User11 2 2 8 4 4 4 4 4 4 8

User12 8 2 8 4 8 8 4 16 1 16

User13 2 2 8 1 16 1 2 4 1 4

User14 2 2 4 4 2 4 4 4 8 4

User15 2 8 8 4 4 8 4 16 8 8

User16 2 8 2 1 8 8 8 8 8 4

User17 2 2 2 1 2 2 2 16 1 1

User18 2 2 4 4 16 1 4 1 32 4

User19 2 2 8 4 8 8 4 16 8 4

User20 4 2 4 4 2 2 2 1 1 4

Mode 2 2 8 4 2 8 2 16 8 4

Number of Segments

Table C.2: Table with the number of segments chosen
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Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Object 7 Object 8 Object 9 Object 10 Total Sum Average

User1 00:36 00:34 01:00 00:37 00:35 00:29 00:35 00:49 00:55 00:54 07:04 00:42

User2 01:02 00:38 00:58 00:54 01:03 01:00 00:48 00:45 00:54 00:59 09:01 00:54

User3 00:27 00:35 00:55 00:50 00:47 00:31 00:42 00:51 00:37 00:41 06:56 00:41

User4 01:23 01:17 01:13 01:11 01:35 01:03 00:33 01:26 02:56 01:52 14:29 01:26

User5 00:31 00:28 01:35 00:46 00:27 00:33 00:43 01:21 00:41 00:59 08:04 00:48

User6 01:10 00:19 00:54 00:29 00:31 00:49 00:44 01:16 01:32 01:13 08:57 00:53

User7 00:39 00:30 01:13 01:00 01:04 00:40 00:56 00:54 01:21 01:00 09:17 00:55

User8 01:05 02:03 01:24 00:53 01:00 01:11 00:47 01:17 01:46 00:39 12:05 01:12

User9 00:53 00:40 01:26 00:51 00:42 01:15 00:42 02:17 01:51 01:00 11:37 01:09

User10 00:20 00:25 00:45 01:15 00:18 00:36 00:14 00:46 01:28 00:09 06:16 00:37

User11 00:39 00:34 01:02 00:29 01:18 00:17 00:49 01:17 01:46 00:49 09:00 00:54

User12 01:22 01:31 01:15 00:54 02:07 02:08 01:11 01:18 02:47 01:27 16:00 01:36

User13 00:40 00:53 00:55 01:00 00:57 01:30 00:53 01:05 01:21 00:47 10:01 01:00

User14 00:58 01:26 02:16 01:44 01:18 01:22 00:35 02:54 02:01 01:29 16:03 01:36

User15 00:28 00:48 00:30 00:43 00:32 00:55 00:32 00:39 01:09 00:47 07:03 00:42

User16 01:03 01:18 00:42 00:40 00:43 01:07 00:40 01:09 01:31 01:36 10:29 01:02

User17 00:22 00:52 01:55 00:24 01:47 00:41 00:52 01:57 01:35 01:55 12:20 01:14

User18 00:33 00:42 02:05 02:05 01:22 01:54 00:31 01:31 02:06 01:16 14:05 01:24

User19 00:50 01:20 01:44 01:07 01:33 01:53 00:49 00:43 01:10 00:50 11:59 01:11

User20 00:36 00:20 01:13 01:29 00:42 01:07 00:45 01:41 01:59 01:37 11:29 01:08

Average 00:46 00:51 01:15 00:58 01:01 01:03 00:43 01:17 01:34 01:05 10:36

Time

Table C.3: Table with the times it took for each user to segment an object
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Figure C.3: Results of user choices for object1
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Figure C.4: Results of user choices for object2
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Figure C.7: Results of user choices for object5
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Figure C.8: Results of user choices for object6
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Figure C.9: Results of user choices for object7
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Figure C.10: Results of user choices for object8
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Figure C.11: Results of user choices for object9
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Figure C.12: Results of user choices for object10

C.4 Detailed results using pie charts with merged clusters

As it was previously described, for some objects it was not so easy to conclude which number of segments
produced the most meaningful results to the user. So, on this section, we represented the pie charts that
were used to reach a conclusion as well as the values extracted from them.

Although it is necessary to choose more than one segment, it is easy to chose which ones, because it
only required to use two segment numbers in order to obtain the biggest range of choices, starting with
object 3 where 75% of the users have chosen the results with 4 and 8 segments. The same happens to
object 7 where the choices for the segment number are 2 and 4, both of these choices have the same
number of user choices, making it a total of 80% of choices (figure C.16). For object 9 it is not so easy
to come to a conclusion, it can be seen in Figure C.17 it is very ambiguous, because it has five users
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Figure C.15: Pie chart of the number of segments
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Figure C.16: Pie chart of the number of segments
choices fusion of object 7

that have chosen one segment and six that have chosen eight. But by merging the number of segments 8
and 16 we get 50%, half of the choices. The users for object 10 have chosen only four different segment
numbers, but 70% have chosen level 4 and 8 (figure C.18), the rest are on opposite sides, that is, 10%
preferred to have the entire object and 20% decided to have a detailed segmentation.

The remaining objects proved to be harder to interpret and to solve this problem, we merged three
numbers of segments. These have the number levels with very similar amounts of choices, like object 5
that has from four to five users in each segment number, so, to not use all these values, the only segment
number that was excluded was the 16 because is very distant from the rest. This makes a total of 80%
of user choices (Figure C.14). The object 10 is less ambiguous but if we merge the segments 2 and 4 we
get nine users choosing these number of segments which is more choices then the result with 8, so to get
a better result were chose the number of segments 2, 4 and 8 with a total of 85% (Figure C.15).
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Appendix D

Comparative Results

For the purpose of reaching the goals of producing an automatic segmentation with results that are
meaningful to the users it we executed the Manual Segmentation Test Using HFP which consisted on
asking the users to segment a collection of objects. The results of this test were used to improve and refine
the approach by comparing them to the results produced by CaS algorithm using different thresholds,
with the purpose of defining these values.

The table D.1 has the values of the similarity and similar count thresholds that were used on each
test. These values were found by first defining a minimum (0.3) and a maximum (1) and the mean of
these (0.65). Then each interval ([0.3, 0.65] and [0.65, 1]) was also divided also in two by calculating a
new mean for each of the two intervals (0,48 and 0.825), and so on, to see where it gets a segmentation
result closest to the one selected by the user. The interval [0.3, 0.48] was immediately excluded because
most of the results were over segmented. Then we also calculated the mean between the 0.48 and 0.65,
getting the value of 0.60. This value and the 0.65 produced good results so we also tested 0.58 and 0.59.
For the interval [0.65, 1] the opposite happened, that is, the objects are under segmented and most of
them with the same number of clusters, even if we increase the similar-count threshold. In these cases
the number of segments increase, but all objects have almost the same number of segments, so, these are
not good values to use.

For comparing the results, we used the difference between number of segments and the percentage of
user choices which is all represented in Table D.2.

Similarity Similar Count

Test1 0.3 1

Test2 0.3 2

Test3 0.48 1

Test4 0.56 1

Test5 0.58 1

Test6 0.59 1

Test7 0.6 1

Test8 0.65 1

Test9 0.65 2

Test10 0.65 3

Test11 0.7 1

Test12 0.738 1

Test13 0.738 2

Test14 0.825 1

Test15 0.825 2

Test16 0.825 3

Test17 1 1

Test18 1 2
Test19 1 3

Table D.1: Similarity and Similar count thresholds for each test
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1 2 4 8 14 16 30 31 32 52 55 114

obj1 65% 15% 20%

obj2 80% 5% 10% 5%

obj3 5% 10% 35% 40% 5% 5%

obj4 20% 5% 65% 10%

obj5 30% 25% 25% 20%

obj6 10% 25% 20% 40% 5%

obj7 40% 40% 5% 15%

obj8 20% 15% 15% 40% 5% 5%

obj9 25% 10% 5% 30% 20% 5% 5%

obj10 10% 45% 25% 20%

Nº Cluster

Table D.2: Table of the user choices percentages for each object with each number of segments.

D.1 Adapted CaS

Aiming to define the values of the similar count and similarity thresholds, we compared different results
of CaS approaches, depending on these values, with the number of segments that were previously chosen
in the Manual Segmentation Test Using HFP. For that we used the Adapted CaS prototype that was
executed with different parameters. To have a wider range of different values nineteen tests were executed.
In the next tables are the results of these tests. Next to the number of the test is first, the similarity
threshold used and then the value of the similar count threshold used.

To compare the results of the Adapted CaS approach with the results of the manual segmentation
created by the users we used the difference between the number of segments, the percentage of choices
and a classification.

With this comparison it was possible to notice that some objects were still over segmented relatively
to the results produced by the user, and also, with this kind of objects, it was possible to observe that
these segments that belonged to the over segmented objects were similar to primitives (cylinders, cones,
spheres). The most obvious object where this happened is object 8, even having less segments than the
result chosen by the user, it presents results where the spheres and cones are over-segmented. The tables
show that this object just has a classification of one or two worst classification. So, to solve this limitation
we added the Geons to label a segment as decomposable or not and a new study was performed.

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 20 18 *

Obj2 2 25 23 *

Obj3 4/ 8 18 14/ 10 *

Obj4 4 4 0 ****

Obj5 2/ 4/ 8 18 16/ 14/ 10 *

Obj6 2/ 4 / 8 21 19/ 17/ 13 *

Obj7 2/ 4 32 30/ 28 *

Obj8 16 41 25 *

Obj9 8/ 16 25 17/ 9 *

Obj10 4/ 8 31 27/ 23 *

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 6 4 *

Obj2 2 7 5 *

Obj3 4/ 8 6 2/ -2 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 8 6/ 2/ 0 ***

Obj6 2/ 4/ 8 6 4/ 2/ -2 *

Obj7 2/ 4 13 11/ 9 *

Obj8 16 13 -3 **

Obj9 8/ 16 8 0/ -8 **
Obj10 4/ 8 9 5/ 1 ***

Test 1 (0.3 / 1)

Test 3 (0.48 - 1)

Table D.3: Experimental results of test 1

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 29 27 *

Obj2 2 32 30 *

Obj3 4/ 8 34 30/ 26 *

Obj4 4 4 0 ****

Obj5 2/ 4/ 8 21 19/ 17/ 13 *

Obj6 2/ 4 / 8 29 27/ 25/ 21 *

Obj7 2/ 4 50 48/ 46 *

Obj8 16 52 36 *

Obj9 8/ 16 36 28/ 20 *

Obj10 4/ 8 48 44/ 40 *

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 4 2 **

Obj3 4/ 8 4 0/ - 8 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 3 1/ -1/ -5 ***

Obj6 2/ 4 / 8 5 3/ 1/ -3 *

Obj7 2/ 4 8  6/ 4 *

Obj8 16 8 -8 **

Obj9 8/ 16 6 -2/ -10 *
Obj10 4/ 8 5 1/ -3 ***

Test 2 (0.3 / 2)

Test 4 (0.56 - 1)

Table D.4: Experimental results of test 2
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User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 20 18 *

Obj2 2 25 23 *

Obj3 4/ 8 18 14/ 10 *

Obj4 4 4 0 ****

Obj5 2/ 4/ 8 18 16/ 14/ 10 *

Obj6 2/ 4 / 8 21 19/ 17/ 13 *

Obj7 2/ 4 32 30/ 28 *

Obj8 16 41 25 *

Obj9 8/ 16 25 17/ 9 *

Obj10 4/ 8 31 27/ 23 *

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 6 4 *

Obj2 2 7 5 *

Obj3 4/ 8 6 2/ -2 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 8 6/ 2/ 0 ***

Obj6 2/ 4/ 8 6 4/ 2/ -2 *

Obj7 2/ 4 13 11/ 9 *

Obj8 16 13 -3 **

Obj9 8/ 16 8 0/ -8 **
Obj10 4/ 8 9 5/ 1 ***

Test 1 (0.3 / 1)

Test 3 (0.48 - 1)

Table D.5: Experimental results of test 3

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 29 27 *

Obj2 2 32 30 *

Obj3 4/ 8 34 30/ 26 *

Obj4 4 4 0 ****

Obj5 2/ 4/ 8 21 19/ 17/ 13 *

Obj6 2/ 4 / 8 29 27/ 25/ 21 *

Obj7 2/ 4 50 48/ 46 *

Obj8 16 52 36 *

Obj9 8/ 16 36 28/ 20 *

Obj10 4/ 8 48 44/ 40 *

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 4 2 **

Obj3 4/ 8 4 0/ - 8 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 3 1/ -1/ -5 ***

Obj6 2/ 4 / 8 5 3/ 1/ -3 *

Obj7 2/ 4 8  6/ 4 *

Obj8 16 8 -8 **

Obj9 8/ 16 6 -2/ -10 *
Obj10 4/ 8 5 1/ -3 ***

Test 2 (0.3 / 2)

Test 4 (0.56 - 1)

Table D.6: Experimental results of test 4

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 *

Obj7 2/ 4 7 5 / 3 **

Obj8 16 6 -10 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4 / 8 4 0/ -4 ***

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 3 -1 / -5 ***

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/-2/ -6 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 *

Obj7 2/4 5 3/ 1 ***

Obj8 16 6 -10 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 3 -1/ -5 **

Test 5 (0.58 / 1)

Test 7 (0.6 / 1)

Table D.7: Experimental results of test 5

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4 / 8 4 2/ 0/ -4 *

Obj7 2/ 4 5 3/ 1 ***

Obj8 16 6 -10 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 3 -1/ -5 **

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 3 1/ -5 ***

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4 / 8 3 1/ -1/ -5 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 5 -11 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 2 -2/ -6 *

Test 6 (0.59 / 1)

Test 8 (0.65 - 1)

Table D.8: Experimental results of test 6

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 *

Obj7 2/ 4 7 5 / 3 **

Obj8 16 6 -10 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4 / 8 4 0/ -4 ***

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 3 -1 / -5 ***

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/-2/ -6 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 *

Obj7 2/4 5 3/ 1 ***

Obj8 16 6 -10 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 3 -1/ -5 **

Test 5 (0.58 / 1)

Test 7 (0.6 / 1)

Table D.9: Experimental results of test 7

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4 / 8 4 2/ 0/ -4 *

Obj7 2/ 4 5 3/ 1 ***

Obj8 16 6 -10 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 3 -1/ -5 **

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 3 1/ -5 ***

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4 / 8 3 1/ -1/ -5 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 5 -11 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 2 -2/ -6 *

Test 6 (0.59 / 1)

Test 8 (0.65 - 1)

Table D.10: Experimental results of test 8
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User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 5 3 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4/ 8 6 4/ 2/ -2 *

Obj7 2/ 4 9 7/ 5 *

Obj8 16 8 -8 **

Obj9 8/ 16 8 0/ -8 **
Obj10 4/ 8 6 2/ -2 ***

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 **

Obj2 2 2 0 *

Obj3 4/ 8 2 -2/ -4 ***

Obj4 4 2 -2 ***

Obj5 2/ 4/ 8 2 0/ -2/ -4 *

Obj6 2/ 4/ 8 2 0/ -2/ -4 *

Obj7 2/ 4 3 1/ -1 **

Obj8 16 3 -11 *

Obj9 8/ 16 2 -6/ -14 **
Obj10 4/ 8 2 -2/ -6 ***

Test 11 (0.7/ 1)

Test 9 (0.65 - 2)

Table D.11: Experimental results of test 9

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 5 3 *

Obj2 2 7 5 *

Obj3 4/ 8 10 6/ 2 *

Obj4 4 4 0 ****

Obj5 2/ 4/ 8 7 5/ 3/ -1 *

Obj6 2/ 4 / 8 7 5/ 3/ -1 ***

Obj7 2/ 4 8 6/ 4 *

Obj8 16 6 -10 **

Obj9 8/ 16 10 2/ -6 **
Obj10 4/ 8 7 3/ -1 ***

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -4 ***

Obj6 2/ 4 / 8 2 0/ -2/ -4 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 3 *
Obj10 4/ 8 2 -2/ -6 ***

Test 10 (0.65 / 3)

Test 12 (0.738 / 1)

Table D.12: Experimental results of test
10

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 5 3 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4/ 8 6 4/ 2/ -2 *

Obj7 2/ 4 9 7/ 5 *

Obj8 16 8 -8 **

Obj9 8/ 16 8 0/ -8 **
Obj10 4/ 8 6 2/ -2 ***

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 **

Obj2 2 2 0 *

Obj3 4/ 8 2 -2/ -4 ***

Obj4 4 2 -2 ***

Obj5 2/ 4/ 8 2 0/ -2/ -4 *

Obj6 2/ 4/ 8 2 0/ -2/ -4 *

Obj7 2/ 4 3 1/ -1 **

Obj8 16 3 -11 *

Obj9 8/ 16 2 -6/ -14 **
Obj10 4/ 8 2 -2/ -6 ***

Test 11 (0.7/ 1)

Test 9 (0.65 - 2)

Table D.13: Experimental results of test
11

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 5 3 *

Obj2 2 7 5 *

Obj3 4/ 8 10 6/ 2 *

Obj4 4 4 0 ****

Obj5 2/ 4/ 8 7 5/ 3/ -1 *

Obj6 2/ 4 / 8 7 5/ 3/ -1 ***

Obj7 2/ 4 8 6/ 4 *

Obj8 16 6 -10 **

Obj9 8/ 16 10 2/ -6 **
Obj10 4/ 8 7 3/ -1 ***

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -4 ***

Obj6 2/ 4 / 8 2 0/ -2/ -4 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 3 *
Obj10 4/ 8 2 -2/ -6 ***

Test 10 (0.65 / 3)

Test 12 (0.738 / 1)

Table D.14: Experimental results of test
12

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 5 3/ 1 **

Obj8 16 5 -11 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 4 0/ -4 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 5 -11 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 13 (0.738 / 2)

Test 15 (0.825 / 2)

Table D.15: Experimental results of test
13

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -4 ***

Obj6 2/ 4 / 8 2 0/ -2/ -4 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 2 -6/ -14 *
Obj10 4/ 8 2 -2/ -6 *

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4 / 8 4 2/ 0/ -4 ***

Obj7 2/ 4 5 3/ -1 **

Obj8 16 4 -12 *

Obj9 8/ 16 7 -1/ -9 **
Obj10 4/ 8 5 1/  -3 ***

Test 14 (0.825 / 1)

Test 16 (0.825 / 3)

Table D.16: Experimental results of test
14
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User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 5 3/ 1 **

Obj8 16 5 -11 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 4 0/ -4 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 5 -11 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 13 (0.738 / 2)

Test 15 (0.825 / 2)

Table D.17: Experimental results of test
15

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -4 ***

Obj6 2/ 4 / 8 2 0/ -2/ -4 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 2 -6/ -14 *
Obj10 4/ 8 2 -2/ -6 *

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4 / 8 4 2/ 0/ -4 ***

Obj7 2/ 4 5 3/ -1 **

Obj8 16 4 -12 *

Obj9 8/ 16 7 -1/ -9 **
Obj10 4/ 8 5 1/  -3 ***

Test 14 (0.825 / 1)

Test 16 (0.825 / 3)

Table D.18: Experimental results of test
16

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -4 ***

Obj6 2/ 4/ 8 2 0/ -2/ -4 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 2 -6/ -14 *
Obj10 4/ 8 2 -2/ -6 *

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 4 0/ -4 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 17 (1 / 1)

Test 19 (1 / 3)

Table D.19: Experimental results of test
17

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 4 0/ -4 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4 / 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 18 (1 / 2)

Table D.20: Experimental results of test
18

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -4 **

Obj4 4 2 -2 *

Obj5 2/ 4/ 8 2 0/ -2/ -4 ***

Obj6 2/ 4/ 8 2 0/ -2/ -4 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 2 -6/ -14 *
Obj10 4/ 8 2 -2/ -6 *

User

Nº Clusts Nº Clusts Dif Quality

Obj1 2 4 2 **

Obj2 2 4 2 *

Obj3 4/ 8 4 0/ -4 ***

Obj4 4 3 -1 **

Obj5 2/ 4/ 8 4 2/ 0/ -4 *

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 17 (1 / 1)

Test 19 (1 / 3)

Table D.21: Experimental results of test
19
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Test1 Teste2 Teste3 Teste4 Teste5 Teste6 Teste7 Teste8 Teste9 Teste10

obj1 0 0 0 65 65 65 65 65 15 0

obj2 0 0 0 5 80 80 80 80 0 0

obj3 0 0 0 35 35 35 0 0 0 0

obj4 65 65 0 5 5 5 5 5 0 65

obj5 0 0 25 0 30 30 30 30 25 0

obj6 0 0 0 0 20 20 20 0 0 0

obj7 0 0 0 5 0 0 0 40 0 5

obj8 0 0 0 15 0 0 0 0 15 0

obj9 0 0 30 0 5 5 5 5 30 0

obj10 0 0 0 0 45 0 0 10 0 0

65 65 55 130 285 240 205 235 85 70

Choices %

Table D.22: The percentage according to user choices for the comparison test

Teste11 Teste12 Teste13 Teste14 Teste15 Teste16 Teste17 Teste18 Teste19

obj1 65 65 15 65 15 15 65 15 15

obj2 80 80 5 80 5 5 80 5 5

obj3 10 10 0 10 35 0 10 35 35

obj4 5 5 0 5 0 0 5 0 0

obj5 30 30 25 30 25 25 30 25 25

obj6 25 25 20 25 20 20 25 20 20

obj7 0 40 0 40 40 0 40 40 40

obj8 0 0 0 0 0 15 0 15 15

obj9 5 0 5 10 5 0 10 5 5
obj10 45 0 15 0 45 0 0 45 45

265 255 85 265 190 80 265 205 205

Choices %

Table D.23: The percentage according to user choices for the comparison test
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D.2 Geons-augmented CaS

After improving the technique by adding the Geons to segment an object we needed to choose again
which thresholds values produced the most meaningful segmentation. So, we repeated the execution CaS
prototype, only now, with the Geons-augmented version (section 3.5) and also compared the results with
the manual segmentation. With this comparison is possible to prove that it has reached it goal, overcome
the over segmentation limitation, noticing that now for object 8 some tests have a classification of better
results.

User 

Nº Clust Nº Clust Dif Quality

Obj1 2 16 14 *

Obj2 2 21 19 *

Obj3 4/ 8 18 14/ 10 *

Obj4 4 4 0 ***

Obj5 2/ 4/ 8 13 11/ 9/ 5 *

Obj6 2/ 4 / 8 13 11/ 9/ 5 *

Obj7 2/ 4 16 14/ 12 *

Obj8 16 7 -9 ****

Obj9 8/ 16 23 15/ 7 *
Obj10 4/ 8 27 23/ 19 *

User

Nº Clust Nº Clust Dif Quality

Obj1 2 6 4 *

Obj2 2 7 5 *

Obj3 4/ 8 7 3/ -1 **

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 6 4/ 2/ -2 **

Obj6 2/ 4/ 8 5 3/ 1/ -3 **

Obj7 2/ 4 9 7/ 5 ***

Obj8 16 7 9 ****

Obj9 8/ 16 8 0/ -8 ***
Obj10 4/ 8 9 5/ 1 ***

Test 1 (0.3 / 1)

Test 3 (0.48 - 1)

Table D.24: Experimental results of test 1

User

Nº Clust Nº Clust Dif Quality

Obj1 2 22 20 *

Obj2 2 25 23 *

Obj3 4/ 8 34 30/ 26 *

Obj4 4 4 0 ***

Obj5 2/ 4/ 8 15 13/ 11/ 7 *

Obj6 2/ 4 / 8 16 14/ 12/ 8 *

Obj7 2/ 4 21 19/ 17 *

Obj8 16 7 -9 ****

Obj9 8/ 16 34 26/ 18 *
Obj10 4/ 8 37 33/ 29 *

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 4 2 *

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 3 1/ -1/ -5 ****

Obj6 2/ 4 / 8 5 3/ 1/ -3 *

Obj7 2/ 4 7 5/ 3 ****

Obj8 16 5 11 ****

Obj9 8/ 16 4 -4/ -12 **
Obj10 4/ 8 7 3/ -1 ***

Test 2 (0.3 / 2)

Test 4 (0.56 - 1)

Table D.25: Experimental results of test 2

User 

Nº Clust Nº Clust Dif Quality

Obj1 2 16 14 *

Obj2 2 21 19 *

Obj3 4/ 8 18 14/ 10 *

Obj4 4 4 0 ***

Obj5 2/ 4/ 8 13 11/ 9/ 5 *

Obj6 2/ 4 / 8 13 11/ 9/ 5 *

Obj7 2/ 4 16 14/ 12 *

Obj8 16 7 -9 ****

Obj9 8/ 16 23 15/ 7 *
Obj10 4/ 8 27 23/ 19 *

User

Nº Clust Nº Clust Dif Quality

Obj1 2 6 4 *

Obj2 2 7 5 *

Obj3 4/ 8 7 3/ -1 **

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 6 4/ 2/ -2 **

Obj6 2/ 4/ 8 5 3/ 1/ -3 **

Obj7 2/ 4 9 7/ 5 ***

Obj8 16 7 9 ****

Obj9 8/ 16 8 0/ -8 ***
Obj10 4/ 8 9 5/ 1 ***

Test 1 (0.3 / 1)

Test 3 (0.48 - 1)

Table D.26: Experimental results of test 3

User

Nº Clust Nº Clust Dif Quality

Obj1 2 22 20 *

Obj2 2 25 23 *

Obj3 4/ 8 34 30/ 26 *

Obj4 4 4 0 ***

Obj5 2/ 4/ 8 15 13/ 11/ 7 *

Obj6 2/ 4 / 8 16 14/ 12/ 8 *

Obj7 2/ 4 21 19/ 17 *

Obj8 16 7 -9 ****

Obj9 8/ 16 34 26/ 18 *
Obj10 4/ 8 37 33/ 29 *

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 4 2 *

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 3 1/ -1/ -5 ****

Obj6 2/ 4 / 8 5 3/ 1/ -3 *

Obj7 2/ 4 7 5/ 3 ****

Obj8 16 5 11 ****

Obj9 8/ 16 4 -4/ -12 **
Obj10 4/ 8 7 3/ -1 ***

Test 2 (0.3 / 2)

Test 4 (0.56 - 1)

Table D.27: Experimental results of test 4

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 3 1/ -1/ -5 ***

Obj7 2/ 4 5 3/ 1 ****

Obj8 16 5 11 ****

Obj9 8/ 16 4 -4/ -12 **

Obj10 4 / 8 4 0/ -4 ***

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 3 1/ -5 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 3 1/ -1/ -5 ***

Obj7 2/4 5 3/ 1 ****

Obj8 16 5 11 ****

Obj9 8/ 16 4 -4/ -12 **
Obj10 4/ 8 3 1/ -5 **

Test 5 (0.58 / 1)

Test 7 (0.6 / 1)

Table D.28: Experimental results of test 5

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 3 1/ -1/ -5 ***

Obj7 2/ 4 5 3/ 1 ****

Obj8 16 5 11 ****

Obj9 8/ 16 4 -4/ -12 **

Obj10 4 / 8 3 1/ -5 **

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 3 1/ -5 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/4 3 1/ -1 **

Obj8 16 4 12 **

Obj9 8/ 16 4 -4/ -12 **
Obj10 4/ 8 2 2/ -6 **

Test 8 (0.65 - 1)

Test 6 (0.59 / 1)

Table D.29: Experimental results of test 6
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User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 3 1/ -1/ -5 ***

Obj7 2/ 4 5 3/ 1 ****

Obj8 16 5 11 ****

Obj9 8/ 16 4 -4/ -12 **

Obj10 4 / 8 4 0/ -4 ***

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 3 1/ -5 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 3 1/ -1/ -5 ***

Obj7 2/4 5 3/ 1 ****

Obj8 16 5 11 ****

Obj9 8/ 16 4 -4/ -12 **
Obj10 4/ 8 3 1/ -5 **

Test 5 (0.58 / 1)

Test 7 (0.6 / 1)

Table D.30: Experimental results of test 7

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 4 0/ -4 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 3 1/ -1/ -5 ***

Obj7 2/ 4 5 3/ 1 ****

Obj8 16 5 11 ****

Obj9 8/ 16 4 -4/ -12 **

Obj10 4 / 8 3 1/ -5 **

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 3 1/ -5 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/4 3 1/ -1 **

Obj8 16 4 12 **

Obj9 8/ 16 4 -4/ -12 **
Obj10 4/ 8 2 2/ -6 **

Test 8 (0.65 - 1)

Test 6 (0.59 / 1)

Table D.31: Experimental results of test 8

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 2 *

Obj2 2 5 3 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 5 3/ 1/ -3 **

Obj7 2/ 4 7 5/ 3 **

Obj8 16 6 10 ****

Obj9 8/ 16 7 -1/ -9 ***
Obj10 4/ 8 6 2/ -2 ***

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -6 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/ 4 3 1/ -1 ***

Obj8 16 3 -13 **

Obj9 8/ 16 3 -5/ -13 *
Obj10 4/ 8 2 -2/ -6 **

Test 9 (0.65 - 2)

Test 11 (0.7/ 1)

Table D.32: Experimental results of test 9

User

Nº Clust Nº Clust Dif Quality

Obj1 2 5 3 **

Obj2 2 7 5 *

Obj3 4/ 8 10 6/ 2 *

Obj4 4 4 0 ****

Obj5 2/ 4/ 8 7 5/ 3/ -1 ****

Obj6 2/ 4/ 8 7 5/ 3/ -1 ***

Obj7 2/ 4 8 6/ 4 **

Obj8 16 6 10 ****

Obj9 8/ 16 10 2/ -6 ***
Obj10 4/ 8 7 3/ -1 **

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -6 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 3 -5/ -13 *
Obj10 4/ 8 2 -2/ -6 **

Test 12 (0.738 / 1)

Test 10 (0.65 / 3)

Table D.33: Experimental results of test
10

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 2 *

Obj2 2 5 3 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 5 3/ 1/ -3 **

Obj7 2/ 4 7 5/ 3 **

Obj8 16 6 10 ****

Obj9 8/ 16 7 -1/ -9 ***
Obj10 4/ 8 6 2/ -2 ***

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -6 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/ 4 3 1/ -1 ***

Obj8 16 3 -13 **

Obj9 8/ 16 3 -5/ -13 *
Obj10 4/ 8 2 -2/ -6 **

Test 9 (0.65 - 2)

Test 11 (0.7/ 1)

Table D.34: Experimental results of test
11

User

Nº Clust Nº Clust Dif Quality

Obj1 2 5 3 **

Obj2 2 7 5 *

Obj3 4/ 8 10 6/ 2 *

Obj4 4 4 0 ****

Obj5 2/ 4/ 8 7 5/ 3/ -1 ****

Obj6 2/ 4/ 8 7 5/ 3/ -1 ***

Obj7 2/ 4 8 6/ 4 **

Obj8 16 6 10 ****

Obj9 8/ 16 10 2/ -6 ***
Obj10 4/ 8 7 3/ -1 **

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -6 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 3 -5/ -13 *
Obj10 4/ 8 2 -2/ -6 **

Test 12 (0.738 / 1)

Test 10 (0.65 / 3)

Table D.35: Experimental results of test
12
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User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 5 3/ 1 **

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 4 0/ -4 **

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 15 (0.825 / 2)

Test 13 (0.738 / 2)

Table D.36: Experimental results of test
13

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -6 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 2 -6/ -14 *
Obj10 4/ 8 2 -2/ -6 **

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 5 3/ 1 ****

Obj8 16 4 -12 *

Obj9 8/ 16 7 -1/ -9 ***
Obj10 4/ 8 5 1/ -3 **

Test 16 (0.825 / 3)

Test 14 (0.825 / 1)

Table D.37: Experimental results of test
14

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 5 3/ 1 **

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 4 0/ -4 **

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 15 (0.825 / 2)

Test 13 (0.738 / 2)

Table D.38: Experimental results of test
15

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -6 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 2 -6/ -14 *
Obj10 4/ 8 2 -2/ -6 **

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 5 1/ -3 ***

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 5 3/ 1 ****

Obj8 16 4 -12 *

Obj9 8/ 16 7 -1/ -9 ***
Obj10 4/ 8 5 1/ -3 **

Test 16 (0.825 / 3)

Test 14 (0.825 / 1)

Table D.39: Experimental results of test
16

User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -6 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 2 -6/ -14 *
Obj10 4/ 8 2 -2/ -6 **

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 4 0/ -4 **

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 19 (1 / 3)

Test 17 (1 / 1)

Table D.40: Experimental results of test
17

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 4 0/ -4 **

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 18 (1 / 2)

Table D.41: Experimental results of test
18
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User

Nº Clust Nº Clust Dif Quality

Obj1 2 2 0 ***

Obj2 2 2 0 ***

Obj3 4/ 8 2 -2/ -6 **

Obj4 4 2 -2 **

Obj5 2/ 4/ 8 2 0/ -2/ -6 ***

Obj6 2/ 4/ 8 2 0/ -2/ -6 ***

Obj7 2/ 4 2 0/ -2 ***

Obj8 16 2 -14 *

Obj9 8/ 16 2 -6/ -14 *
Obj10 4/ 8 2 -2/ -6 **

User

Nº Clust Nº Clust Dif Quality

Obj1 2 4 -2 *

Obj2 2 4 -2 *

Obj3 4/ 8 4 0/ -4 **

Obj4 4 3 -1 ***

Obj5 2/ 4/ 8 4 2/ 0/ -4 ***

Obj6 2/ 4/ 8 4 2/ 0/ -4 ***

Obj7 2/ 4 4 2/ 0 ***

Obj8 16 4 -12 *

Obj9 8/ 16 4 -4/ -12 *
Obj10 4/ 8 4 0/ -4 ***

Test 19 (1 / 3)

Test 17 (1 / 1)

Table D.42: Experimental results of test
19

Test1 Teste2 Teste3 Teste4 Teste5 Teste6 Teste7 Teste8 Teste9 Teste10

obj1 0 0 0 65 65 65 65 65 15 0

obj2 0 0 0 5 80 80 80 80 0 0

obj3 0 0 0 35 35 35 0 0 0 0

obj4 65 65 0 5 5 5 5 5 0 65

obj5 0 0 0 0 30 30 30 30 25 0

obj6 0 0 0 0 0 0 0 25 0 0

obj7 0 0 0 0 0 0 0 0 0 0

obj8 0 0 0 0 0 0 0 15 0 0

obj9 0 0 30 5 5 5 5 5 0 0
obj10 0 0 0 0 45 0 0 0 0 0

65 65 30 115 265 220 185 225 40 65

Choices %

Table D.43: The percentage according to user choices for the comparison test

Teste11 Teste12 Teste13 Teste14 Teste15 Teste16 Teste17 Teste18 Teste19

obj1 65 65 15 65 15 15 65 15 15

obj2 80 80 5 80 5 5 80 5 5

obj3 10 10 0 10 35 0 10 35 35

obj4 5 5 0 5 0 0 5 0 0

obj5 30 30 25 30 25 25 30 25 25

obj6 25 25 25 25 20 20 25 20 20

obj7 0 40 0 40 40 0 40 40 40

obj8 0 0 15 0 15 15 0 15 15

obj9 0 0 5 10 5 0 10 5 5

obj10 0 0 45 0 45 0 0 45 45

215 255 135 265 205 80 265 205 205

Choices %

Table D.44: The percentage according to user choices for the comparison test
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Appendix E

CaS Evaluation With Users Test

As we aimed for producing meaningful segmentation results, it was necessary to prove the quality of these
results. This chapter of the appendix has the tables and graphics of the CaS Evaluation With Users Test
results as well as a summary of the obtained results.

E.1 Protocol for User Study

Introduction

Nowadays, many computer graphics applications use the segmentation of 3D objects, specially the seg-
mentation which has in consideration the human perception. So, one of the most important aims of these
segmentation approaches is to have a meaningful segmentation to the user. In order to achieve this goal,
for the proposed approach this test will be performed and its purpose is to prove quality of the results
produced by this technique.

This study emerges in the scope of the Collection Aware Segmentation project which is a master degree
project in Information Systems and Computer Engineering. The main goal is to segment a collection of
objects simultaneously based on the segments similarity.

To evaluate the results, this test will consist of two main steps, one where the users will segment
a collection of objects, and a second where the users will compare both results of the Original CaS
and Geons-augmented CaS approach and compare the Geons-augmented CaS approach results with the
results of the previous step.

Methodology

To prove the quality of the produced results, a test with user will be performed, which will be consisted
by two main steps with different tasks. Both will be executed on a different module of the Shade WB for
each. On the first step the Shade WB tools used provides the segmentation functionality using HFP. The
second module used for the second main step shows two objects but with different segmentation results
and three options for the user to choose: the left, right or any result.

The test session consists on a total of four steps. These are identified on the next table (E.1) along
with the respective anticipated duration time. After the table there is a brief explication of each one of
these steps.

1 Filling in a questionnaire, explanation of the experience
and how the manual segmentation application works.

5 min

2 Segmentation of a collection of objects. 15 min
3 Explanation of how the comparison application works. 3 min
4 Choosing the best segmentation result. 15 min

Total time: 38 min

Table E.1: Table with the steps and respective estimated time
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1. Filling in a questionnaire, explanation of the experience and how the manual segmenta-
tion application works

In the beginning the users will be asked to fill in a small questionnaire. This will help to understand
some of the users characteristics and if they use any tool of modeling.

A user guide is given to the users, to guide through the tes, then, the purpose and the procedure of the
session will be explained to the user and finally the first application that he is going to use is presented
to the user, so he can explore it and learn how it works. More specifically, it will be asked to segment an
object by choosing different numbers of clusters.

To execute this task the users resorts, as was previously referred, to the Shade Workbench tool that
is represented on E.1. Initially the entire object is presented to the user, without any segmentation, that
is, it has just one cluster. Then, after having observed the object shape, by rotating and changing the
dimensions, the user has to change the number of segments, in the example on Figure E.1, is an object
with four clusters. This number is changed using the scroll indicated with the red arrow and, in order to
save his choice, the user has to click on the submit button indicated with the blue arrow.

2. Segmentation of a collection of objects

After finishing the previous stage, the user already knows how the application works. So, in this stage
he will be asked to segment a collection of objects.

In more detail, a set of objects us randomly presented to the user, one object at a time. For each
object the user has to choose which segmentation makes more sense, that is, the user has to try out
several levels of the hierarchy of the HSM and then choose the level that has the number of clusters
which produces a segmentation that he thinks to be the more meaningful to him. This option is then
registered by the application for a later evaluation.

This step is executed so that the results can be used on the next step. Because the approach was
tuned to another collection of ten objects, we want to prove that this approach still presents meaningful
results to other collections of objects.

3. Explanation of how the comparison application works

As we are aiming to prove the quality of the Geons-augmented CaS results with this test. To execute
this step of the test it is going to be presented to the user another tool of the Shade Workbench, the
comparison tool, so that he can explore it and learn how it works.

In this step to the user is shown the same object with two different segmentation results, as shown on
Figure E.2, then the user has to chose an option by highlighting a blue rectangle. The user can choose

Figure E.1: Shade Workbench manual segmentation tool interface with a segmented object with four
clusters.
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Figure E.2: Shade Workbench comparison tool interface with two different segmentation results.

the Model 1 option if he prefers the left result, otherwise he must chose the Model 2 option. In the case
of both techniques being the same or very close in the way that the user thinks both are meaningful
results, then he should chose the any choice. Then, to save his option, he clicks on the Submit button
indicated with the red arrow.

4. Choosing the best segmentation result.

As this task it to evaluate the quality of the Geons-augmented CaS results and as the user already
understood the task and how the prototype works, on this step the user is going to compare pairs of
segmentation results.

To prove the approach improvement it is necessary to compare the results from the Original CaS
with the Geons-augmented CaS and also the results produced by this approach with the results produced
by users on the previous step of manual segmentation. For that, the same collection of ten objects
will be used. First they were segmented using the Original CaS approach and then segmented by the
Geons-augmented CaS and then they were segmented by the users the Manual Segmentation Test Using
HFP.

During the test this objects with different results will appear randomly to the user so there will not
be influence on the results, Even the side on which each result appears will be ramdomized, meaning that
one object may present the Original CaS result on the left, and the Geons-augmented CaS result on the
right, and on the next, this order can randomly be the same or inverted.

Collection of objects to test

The users will segment a collection of ten objects that were randomly chosen from the Engineering Shape
Benchmark (ESB) which is a benchmark with more than eight hundred objects. This collection of ten
objects (Figure E.3) will appear randomly to the user so the sequence cannot induce the segmentation
results.
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Object 11 Object 12 Object 13 Object 14

Object 15

Object 19

Object 17

Object 18

Object 16

Object 20

Figure E.3: Collection of 3D objects to segment.
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Questionnaire

I appreciate in advance for your cooperation in filling in this questionnaire.

1. What is your age?

(a) Between 15 and 20 years

(b) Between 21 and 34 years

(c) Between 35 and 55 years

(d) More than 55 years

2. What is your gender?

(a) Feminine

(b) Masculine

3. What are your qualifications?

(a) 9th degree or less

(b) Between 9th degree 12th

(c) 12th degree or equivalent

(d) Academic degree

4. How do you consider yourself on the use of computers?

(a) Inexperienced user

(b) Regular user

(c) Experienced user

5. Do you have any experience in applications for three-dimensional modulation?

(a) None

(b) Some

(c) Many

I would like to thank you for your participation.
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E.2 Detailed results using tables

On Table E.2 are the results of the number of segments that each user has chosen for each object. In
order to obtain the number of segments with more choices, we used the mode. As these conclusions are
not the most important we will not focus on them but on the results that are on the next section.

Object 11 Object 12 Object 13 Object 14 Object 15 Object 16 Object 17 Object 18 Object 19 Object 20

User1 6 2 2 2 4 4 3 3 2 2

User2 5 4 5 4 4 4 5 3 4 4

User3 5 1 3 3 1 1 6 5 1 6

User4 4 2 2 2 4 4 5 4 6 4

User5 4 4 2 2 2 2 3 2 4 3

User6 5 2 3 2 4 2 3 2 2 4

User7 8 2 3 2 2 1 2 2 2 3

User8 7 6 2 2 4 4 10 4 2 4

User9 8 2 2 2 1 4 2 3 2 2

User10 6 7 7 3 2 5 4 2 3 5

User11 4 4 5 4 4 4 5 2 5 4

User12 6 2 2 3 4 4 4 3 3 4

User13 16 9 6 2 4 7 7 2 11 5

User14 10 8 7 4 5 8 9 5 15 8

User15 5 4 3 4 4 3 5 5 5 4

User16 14 9 6 4 4 6 10 4 27 8

User17 10 9 5 4 6 7 3 4 4 5

User18 4 4 2 2 2 5 4 4 2 3

User19 4 2 2 4 4 3 3 3 2 6

User20 5 2 3 3 4 4 3 3 4 2

Mode 5 2 2 2 4 4 3 3 2 4

Segment Number

Table E.2: Table with the number of segments chosen

E.3 Manual Segmentation VS Geons-augmented CaS

This test consisted on proving the quality of the approach relatively to the results of the decomposed
objects produced by the Geons-augmented CaS approach. To prove this we use the results of image E.4
where it is possible to observe that for some objects it is clear that the users preferred their results instead
of the CaS results and for other objects the Geons-augmented CaS approach seems to produce better
results.

The objects that had results worst than the chosen by users are object 11, where most of the users,
seventeen have chosen their segmentation. Another object which has more choices of the user option
is the object 16 with a total of fifteen users choosing the manual segmentation result, besides that, the
five remaining users chose any and CaS option instead of theirs. Finally, the last object that users have
chosen is object 17 with thirteen choosing their results, although a total of seven users chose any option
or CaS approach.

Two of the collection objects have really close numbers on the Geons-augmented CaS option and the
user result. That is, object 12, for instance, has eleven choices of user results and nine as a total of
any and CaS results, meaning that almost half of the sample think that the CaS approach produces a
meaningful result. Object 14 has twelve choices of the user results and eight for the any and CaS options.

For objects 13 and 18 the option with more choices is the any, it was chosen by nine users. Also for
object 20 the any option had more choices, with a total of ten. That is, half of the users have produced
the same result or the results are similar to the ones by the approach, so it is equally meaningful on the
three objects.

The object 19 has the most misapprehend results because it has choices from one to twenty seven
segments, despite that fact, it has the same number of choices for the results produced by the user choices
as well as the results produced by CaS, that is, seven choices, but if we add the any choice with the CaS,
we get a total of thirteen choices.

On the other hand, we have some objects where the CaS results overcome the users results. The
most significant object and where this preference obvious is the object 15 where just one user chose his
segmentation result in opposition to the rest of the group that has chosen any or CaS option.
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With this analysis it is possible to conclude that the users where satisfied with the overall results for
the entire collection, so even though some objects show results which are not the most meaningful to the
user, the majority of the objects have meaningful results to the user.
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Figure E.4: Results of comparing Geons-augmented CaS with users segmentation
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